
Software Engineering Group Project

Imperial College London

Department of Computing

KidneyCaliper
Automated Deep-Learning-Based Workflow

for Kidney Pathologists

Authors:
Andy Wang
James Ball
Jess Lally
Pawe l Kroll
Stefan Radziuk
Sudarshan Sreeram

Supervisor:
Dr Bernhard Kainz

Clients:
Dr Candice Roufosse

Callum Arthurs



1 Executive Summary

1.1 Background

Kidney whole slide
image close-up

A kidney biopsy is a procedure to extract kidney tissue for examination under a
microscope. Typically, kidney pathologists look down the microscope and write re-
ports, marking notable features-of-interest. Kidney transplant recipients may suffer
from post-surgery complications due to the donor organ being a poor fit. These re-
ports form the basis of a grading process to predict the survival rate of the donor
organ in the recipient or to understand why one failed.

As digital pathology becomes more popular, there is an increasing demand for tools that try to automate a
pathologist’s tedious workflow with automatic measurements and feature recognition, especially when 24%
of pathologists are having to outsource work weekly[1]. A slide scanner is a type of microscope that takes
scans of a slide and stitches them together to form a very high-resolution image — a whole slide image (WSI).
Ideally, this digital workflow would evolve into a system where the whole slide image is submitted to an
algorithm that generates annotations and measurements that pathologists can then include in their reports.

Past Master’s projects, by Grzegorz Sarapata[2] and Jiamin Fu[3], made the essential first step towards
creating such a system, which was the creation of two deep-learning models that produce reasonably accurate
labelling on kidney whole slide images. This project, aptly named KidneyCaliper, takes this a step further
and builds upon their models for use outside of a theoretical setting to deliver a fully-automated workflow for
kidney pathologists. The new workflow is dramatically faster, doesn’t require a programming background,
and provides much more useful analysis compared with what was possible with the models on their own.

1.2 Solution

KidneyCaliper facilitates the submission, processing, and analysis of kidney whole slide images auto-
matically, significantly saving the amount of time that researchers and clinicians need to spend generating
analysis for reports. Kidney pathologists can submit many high-resolution whole slide images to be pro-
cessed outside of work hours without human involvement, and have annotations and statistics ready the next
day. This is in stark contrast with the previous workflow, which required significant human effort during
work hours to achieve a comparable result.

In addition to the reduced manual workload, KidneyCaliper provides detailed information about kidney
whole slide images that is practically impossible to gather manually. Image-specific statistics such as the
size of each feature-of-interest, along with the areas of their maximum inscribed circles, are examples of
measurements thatKidneyCaliper can generate which have been proven useful in prior research to estimate
how well a kidney will function[4]. Whole slide images that were processed historically can also be compared
with one another, providing both a macro perspective on the trends seen across many biopsies, and new
insights into the differences in the biopsy stage for successful and unsuccessful kidney transplants.

Whole slide image and annotation editing
suite

Whilst kidney pathologists have reported that the automati-
cally generated feature-of-interest annotations have been accu-
rate, we have integrated a whole slide image and annotation
editing suite to mitigate any potential errors. Any annota-
tions that have been misclassified, are missing, or are otherwise
faulty can be easily corrected, and all statistics for the new an-
notations are updated as soon as modifications are made.

Overall, KidneyCaliper dramatically speeds up a patholo-
gist’s workflow and provides valuable statistics that were pre-
viously unrealistic to obtain. The rich insights into patient
biopsies provide researchers with new information, as well as
the ability to find new relationships between data found in a
kidney biopsy and a successful kidney transplant. This means
KidneyCaliper can have a legitimate impact on improving
the survival rate of the donor kidney in the recipient.

1



2 Introduction

2.1 Motivation

Kidney biopsies are often taken from donor kidneys to predict the likelihood of a successful transplant. The
biopsy is stained and scanned by a slide scanner device to produce a very high-magnification (40X) whole
slide image. Kidney pathologists then provide visual analysis of this whole slide image, or alternatively
analyse the biopsy manually by viewing the slide down a microscope. The count and morphology (shape
and size) of glomeruli present in the scan are key measurements used to evaluate the health of the donor
kidney. Glomeruli are clusters of blood capillaries, used to filter waste and excess fluids from blood[5].

Glomeruli visible on
kidney biopsy scan

However, annotating a whole slide image scan can be extremely time-consuming and
error-prone. It can take around 45 minutes to annotate and count all the glomeruli,
and even longer to annotate all of the features-of-interest. Manually annotating scans
is also not very reproducible, and it can be difficult to obtain accurate glomeruli
counts[6]. Digital tools for automatically annotating kidney scans could lead to
a significant workflow speedup for pathologists, and increase the accuracy of the
statistics gathered from the scans[7][8].

While this would be potentially useful for NHS clinicians as well, our project focused
more on improving the workflow for pathologists working in research. Research has
previously indicated that other statistics may also be useful for predicting the outcome of transplanted
kidneys, particularly the size of glomeruli[4]. These statistics are extremely difficult to calculate by hand,
so a digital application that generates these statistics automatically could be very useful and would allow
researchers to investigate new methods for determining the likely outcome of kidney transplants.

2.2 Objectives

The overall objective for the project was to combine the two deep-learning models developed by Sarapata[2]
and Fu[3] into a single pipeline, providing kidney pathologists with a usable workflow to automatically
annotate kidney scans. Users should be able to upload whole slide image scans to the application, which
will run each model in turn, generating the annotations and statistics for each scan.

The first model identifies different regions of the kidney within the scan, i.e. the medulla (the inner region
of the kidney) and the cortex (the outer region of the kidney), as well as any non-kidney tissue in the scan.
The cortex region is primarily used for analysis, so it is important that pathologists can filter annotations
and calculate statistics for the different regions separately.

The second model annotates the different features-of-interest present on the kidney scan, such as arteries,
glomeruli, and tubules (small tubes carrying fluid and nutrients in the kidneys)[9].

To effectively combine the two models in our application, we needed to adapt the models to be production-
ready. One issue was that processing very large whole slide images (which would be used in practice) was
very slow, so we needed to make improvements to the models to make the application usable on slower
machines, which would be more typical of NHS devices in a clinical setting. Our clients also expressed their
desire for the application to allow users to submit scans in batches that can be annotated overnight, which
would also make their workflow more efficient.

To make the output of the two models usable for the pathologists, we also needed to develop an interface to
allow users to view the produced annotations, make corrections, and view the statistics generated for each
scan. We also wanted to automatically generate statistics that could not be previously calculated by hand,
to allow for richer insights into biopsy scans.

Another important objective for the project was to make sure that it would be possible to locally host the
application, so that it would be only accessible to devices within a local network. This is necessary because
the application would be running on private NHS patient data, which must not be accessible to devices
outside the NHS network, as detailed in section 6.2. However, to allow our clients to demo the application
to other pathologists, we have provided a publicly accessible version, currently hosted on a DoC VM[10].

2

http://kidneycaliper.lucidifai.com/


2.3 Key Achievements

• Significant decrease in the processing time of the two deep-learning models (section 3.3).

• Batch-submission of whole slide images (section 3.2).

• Automatic generation of statistics and graphs (section 3.4).

• Interface for making corrections to generated annotations (section 3.5).

• Support for exporting statistics and annotations into pre-existing software (section 3.4.1).

On a GPU-equipped laptop of ours, the first model (cortex-medulla classifier) was around twice as fast with
our improvements, and the second model (semantic segmentation) was around 40 times faster, as shown in
Figure 13. As well as decreasing the processing time on powerful machines that researchers are likely to
have access to, this has also made the application more usable on slower machines. This makes it flexible
for machines with limited GPU capabilities, which are more typical of the NHS devices in clinical settings.

We were also able to implement batch-submission of whole slide images, to allow users to upload multiple
kidney scans at once. This was particularly important to the researchers as it would allow them to process
scans overnight, significantly speeding up their workflow.

Not only were we able to generate the same statistics that pathologists currently measure from kidney scans
by hand, we were also able to generate new, potentially useful measurements and statistics, such as the
areas of different vessels. Users are able to plot graphs of any measurement against any other measurement,
allowing them to investigate these new statistics. We also support comparison of statistics from historical
kidney scans, which will be useful for researchers to compare biopsies taken at different times from the same
patient, to investigate how transplanted kidneys have changed with time.

In addition, we have created a simple interface to make minor corrections to the produced annotations,
allowing them to add new annotations for vessels that were missed, delete incorrect annotations, and al-
low them to change the labels of annotations that were incorrectly identified. This should also speed up
the pathologists’ workflow as there is no need to move the annotations to a different program (such as
QuPath[11]) to make these changes.

Finally, we have also created support for the pre-existing software that pathologists are currently using
for whole slide image annotation, such as QuPath. All annotations produced by KidneyCaliper can be
exported in the GeoJSON[12] format to be viewed in QuPath, and any statistics can be exported in CSV
format to be compatible with various data analysis tools. This was important as it means the annotations
can be used in industry-standard software.

3 Design and Implementation

3.1 Design Overview and Motivation

KidneyCaliper is a web-based application. It is inherently cross-platform and eliminates the need for the
user to install additional software. Moreover, this choice provided us freedom to choose from a range of
out-of-the-box solutions for displaying and annotating digital kidney images. Figure 1 showcases a high-level
overview of KidneyCaliper’s architecture; several components of it will be detailed in subsequent sections.

Due to the numerous privacy concerns that arise when dealing with medical data of patients, we identified
that our clients would likely have to self-host KidneyCaliper either on their own machines or in their
clinic’s intranet, where patient data is stored on trusted servers. Considering the context of this use-case,
we decided to minimise the setup overhead of both the server and client. To achieve this, we chose to use
an SQLite[13] database and simple file system storage for uploaded and processed data. Other database
and data storage solutions we explored, such as PostgreSQL[14] and cloud file storage, pose additional setup
overhead. In the event database performance ever becomes a concern, we allow for an easy transition to
different database solutions through our server configuration file. This was made possible through our use

3



Figure 1: System Architecture Diagram

of SQLAlchemy[15], a Python library that abstracts interfacing with the underlying database. Starting the
client is as simple as opening a tab in the browser with the right address.

For the frontend, we use React[16] with TypeScript. We chose to go with TypeScript over JavaScript for sev-
eral reasons: improved code completion, better code readability and comprehension of purpose and function-
ality, and the strong typing makes unit testing superfluous to an extent. We did, however, encounter an issue
when working with a third-party library, Annotorious[17], that didn’t offer type definitions; this is detailed in
section 3.4. For the user interface, we used Palantir’s Blueprint[18], a component library that’s feature-rich

Figure 2: Vertical Monitor
Orientation

and tailored for data-intensive applications. We paired this with React
Mosaic[19], a tiling window manager for the web, which offers an experi-
ence that’s similar to what one would expect with a traditional desktop
application.

React uses client-side rendering by default. The benefits of server-side
rendering (SSR) aren’t fully realised in the use-case environment of Kid-
neyCaliper. In fact, optimising it for SSR would introduce a complexity
overhead and shift the client’s processing load to the server, ultimately
impacting maintainability.

3.2 Frontend Interface & Experience

Frontend components are structured to be reusable and the component
hierarchy follows a structure that’s similar to that of Atomic Design[20];
here, however, the atoms and molecules are defined by the component
libraries. This strategy reduces duplication across the codebase and pro-
motes good organisation that mitigates the overhead that future develop-
ers may incur in picking up where we left off.

The interface layout is tailored to be responsive and configurable on desk-
top screen sizes; in fact, the window panes can be rearranged through a
drag-and-drop action for users on vertically-oriented monitors as shown
in Figure 2. These panes can also be resized based on the user’s pane-of-
focus by dragging the split handle in the gutter; this is particularly useful
in the result page where the user may want to focus more on the image
viewer than the statistics pane and vice versa. The use of panes establishes separate contexts in a single

4



window, which provides a more cohesive user workflow compared to that offered by a tabbed layout, pop-up
modals or floating information boxes.

Figure 3: Map of User Workflow

Our initial prototype in Streamlit, discussed in sec-
tion 3.5, had three key page contexts: upload,
progress, and result. We found this contributes
to a straightforward user workflow and looked to
maintain a similar structure. Currently, the user
workflow is structured as shown in Figure 3. The
introduction of numerous features didn’t compli-
cate or deviate from the simple, intended workflow.
This was possible because the complexity associ-
ated with those features was extracted into con-
text menus, pop-up confirmation dialogues, inline
tooltips, help modals, drop-down menus, collapsible
sections, non-ideal state placeholders and more!

Throughout the interface, we have implemented
quality-of-life features with the interface elements

mentioned earlier as shown in Figure 4. For example, the user can right-click a chart on the statistics page
to save it as an image or toggle a fullscreen view. The numerous help dialogues we’ve added to the panes
guide the user in learning how to use the platform and to understand its capabilities. When the user uploads
a kidney image, a pane is revealed with its thumbnail and a metadata table. Part of a good user workflow
is keeping the user informed. Further, from a user-experience standpoint, it’s crucial to make the users feel
safe by not having their actions lead to irreversible consequences. To address this, we added confirmation
dialogues and warning callouts to help avoid accidental clicks. We also employ a non-destructive way of
editing annotations, where the original file is duplicated with the user’s changes applied on top, and the file
is listed on the results page with an (edited) badge.

Figure 4: Hidden Interface
Elements

Another important feature that we’ve added to improve the user experi-
ence is allowing users to upload and submit whole slide images in batches.
Images are still processed one-by-one, but this was important as process-
ing these whole slide images can be very slow, particularly on machines
with limited GPU capacity. This allows users to submit scans to be pro-
cessed and annotated outside of working hours, making their workflow
more efficient.

We paid attention in trying to abide by industry-standard UX research
and practices to structure our UI through articles and guides, particularly
those on web usability, from the Nielsen Norman group[21]. Although
our current interface presents the opportunity for additional attention-to-
detail, quality-of-life improvements, we think that it’s well-rounded given
the project’s time frame.

3.3 Parallel Processing Pipeline

Both the cortex-medulla classifier and semantic segmentation models
internally divide a whole slide scan into overlapping square tiles, and
each tile is processed independently. These per-tile processing re-
sults are then gathered to form predictions on kidney regions and fea-
tures.

We have inherited the tiling, per-tile processing, and result merging code from the research works[2][3]. Each
tile undergoes image pre-processing, deep learning model prediction, and model output post-processing steps.
The deep learning model is GPU-accelerated, whereas the pre and post-processing steps are CPU-based.
However, the research work did not exploit parallel computation capabilities in modern multicore CPUs.

5



Pre-processing
Model

prediction (GPU) Post-processing

Since the processing steps of each tile are isolated, our program appears to be easily parallelisable. Gener-
ally, this sort of pattern can be parallelised with a process pool. Due to the differences in the computational
models of GPUs and CPUs, this will not work well: while we may have multiple CPU cores for pre and
post-processing, the number of GPUs available is not guaranteed to be the same (likely far fewer or only
one). Näıvely feeding tasks into a process pool means that there will be multiple instances of the model
prediction attempting to run simultaneously on a single GPU. While it is technically possible to run multi-
ple GPU subroutines (CUDA kernels) in parallel on a single GPU[22], this will unlikely bring any positive
performance impact as each kernel is already automatically parallelised.

Instead, we opted for an asynchronous three-stage pipeline to efficiently utilise both CPUs and GPUs
according to their computation model. Multiple pre and post-processing workers are spawned while only
one CPU process by default is responsible for invoking the GPU-based model prediction. The stages are
connected by multi-producer multi-consumer queues to maximise worker utilisation; a new unit of work will
be picked up as soon as the previous result is placed into the downstream queue. The queues are bounded
to prevent intermediate results from piling up in memory.

Pre-processingPre-processing Pre-processing

Queue

Model
prediction (GPU)

Queue

Post-processing Post-processing Post-processingPost-processingPost-processing

Note that the number of workers for pre-processing may be different from the number of workers for post-
processing. Indeed the numbers are different for the two models. This is because they have different
complexities. The ratio between pre and post-processing workers are tuned to reduce CPU bottlenecking as
much as possible. Although we expect a researcher’s workstation to have only one GPU installed, our code
is structured such that it’ll be extremely easy to add multi-GPU support to further exploit parallelism.

3.4 Annotations and Statistics Generation

3.4.1 GeoJSON and QuPath

In the first iteration, the researchers that we spoke with were clear that the most important thing to im-
plement early on was the ability for annotated features-of-interest to be visualised in industry-standard
pathology software, QuPath[11]. QuPath is an open-source program that digital pathologists are already

6



familiar with, making it an obvious choice to design for in the early prototypes, as recreating a similar
interface tailored for kidney pathology would take significantly longer than a single iteration to develop.

QuPath allows pathologists to both view whole slide images, and import annotations that are displayed over
the top. The format QuPath uses is called GeoJSON, which is typically used for encoding geographic data
structures[12], but it is also perfectly acceptable for other high-resolution image viewers such as QuPath.
GeoJSON uses a geometrical format to describe features or shapes, so we must generate geometrical repre-
sentations of all the features-of-interest present in the whole slide images.

After the image processing pipeline, the semantic segmentation model produces an integer label for every
pixel in the original image. This is used to classify each pixel with a feature-of-interest, such as a glomerulus,
tubulus, or artery. We need to group these clusters of labels together and then convert the clusters into
a geometric representation that can be overlaid as a vector image on top of the kidney whole slide image.
Once we have a geometric representation, it is easy to generate various measurements for the annotation.

After some research, it was clear that the Rasterio Python library[23] was a great choice to both cluster the
classifications, and generate geometry from them. rasterio.features.shapes in particular, does exactly
what was required, and converts the classification output into Rasterio shapes, which can then be trivially
converted into a geometry format supported by GeoJSON. With some minor post-processing, where colours
and feature-of-interest classification names are added to the JSON for QuPath, the GeoJSON can be easily
visualised on top of the whole slide image in QuPath, as seen in Figure 5.

Figure 5: Annotations Visualised in QuPath

In later iterations, we re-use this geometric representation for a slightly different annotation format called
the W3C Web Annotation Data Model[24], as discussed later. Support was kept for QuPath even after
creating a whole slide image viewer that was more tailored to kidney pathologists so that users had a choice
between the familiarity of industry-standard software, or the extra features that KidneyCaliper’s interface
provides.

3.4.2 Generating Measurements

Now that shapes had been created using Rasterio[23], it was easy to generate basic measurements such as
the area, perimeter, and centroid. A full list of measurements can be seen in the final interface in Figure 6.
Kidney pathologists suggested that the area of the maximum inscribed circle would be a useful measurement

7



in addition, which would be more complicated to calculate. Polylabel is an algorithm for calculating this,
which finds the point inside a polygon that is furthest away from any edges, which is the centre of the
maximum inscribed circle[25].

Figure 6: Annotation Measurement List

Polylabel also computes the radius of the inscribed circle, which is required to calculate the area, but un-
fortunately this value is rarely returned in polylabel implementations[26]. One such implementation that
gave us the radius worked well but was written in pure Python, which considerably slowed post-processing
since this must be computed for thousands of annotations. We opted instead to create Python bindings
for an existing implementation[26] in Rust that we modified to return both the centre and radius of the
maximum inscribed circle[27]. The Rust implementation was over 35 times faster than the Python-only
library, which made a significant improvement on post-processing times, speeding it up by over a minute on
more complicated images. As we now have measurements for the maximum inscribed circle, we decided to
add this as an additional annotation for each other annotation.

Measurements themselves, once generated, can be stored within the annotation format being used. Both
GeoJSON[12] and W3C Web Annotations[24] have places to store custom measurements that comply with
their specifications, allowing them to be visualised in QuPath[11] and KidneyCaliper’s interface. Despite
this, a bug was discovered in QuPath that meant custom measurements were not imported correctly. To
remedy this, we issued a pull request that fixes the bug, which has now been implemented in QuPath
v0.3.1[28].

CSV files are also generated at the same time which contain the same measurements for each feature-
of-interest. This was another feature suggested in user feedback that was easy to implement and allows
pathologists to make flexible use of the data that we generate, rather than relying only on the graphs in
KidneyCaliper’s interface.

3.4.3 Presenting Statistics on the Frontend

We used the Recharts[29] library to visualise the generated measurements. It integrates well with React[16]
and its graphics style fits nicely with the rest of the site.

We provide two types of measurement visualisation: individual slide statistics (Figure 7) and cross-slide
comparisons (Figure 8). Measurements gathered from a slide are displayed alongside the slide viewer and
editor. Here, the user can see summary information such as the distribution of feature types, and produce
plots of any two measurements of a particular feature type against each other.

8



Figure 7: Individual slide statistics

Figure 8: Cross comparison

Cross-slide comparisons are based on aggregated measurements (such as mean, median, sum and counts)
of the various data from each slide. Again, the user can plot any category data against each other. Given
the sheer number of data categories available, the axis selection is a nested drop-down (Figure 9) to give a
structured view of them. This drop-down is dynamically generated from the columns in the CSV file so it
will be very easy to track new data in the future.

9



Figure 9: Axis selection

Under cross-slide comparison, each scan provides one data point representing the aggregated measurement
from that scan. Using a file picker, the user can select which scans’ data they’d like to include. We expect
KidneyCaliper to gather a large amount of data through long term use, hence the file picker can filter by
upload date to prevent old data from cluttering up the interface.

Both of these data visualisation interfaces provide the user with an enormous amount of flexibility and
freedom. We want to empower our users with an exploration tool, a torch into the unknown, so that
they can display potentially new scientific results and correlations. Research is highly non-linear, and any
interesting observation - sometimes quite minor - can become a lead to a major discovery. Researchers build
a mental record of these observations from working with a large amount of data for a considerable amount
of time. KidneyCaliper’s visualisation tools facilitate the discovery of these potential leads and present
them in a structured, tangible manner that can be reproduced.

3.5 Viewing and Editing Annotations

We required a specialised plugin to allow very large whole slide images to be viewed in our application. There
were two different open-source JavaScript libraries that we could have used: Leaflet[30], which is usually
used for maps but would be able to load our tiled whole slide images as well, and OpenSeadragon[31], which
is a lightweight tool used in education and medical research. Although the two tools are similar and come
with a wide range of plugins, we found that only OpenSeadragon is compatible with Annotorious[17], an
image annotation library with a specific OpenSeadragon plugin[32]. Annotorious would allow us to overlay
annotations over the basic OpenSeadragon image viewer, and comes with its own wide range of plugins
to allow for annotation editing. Because of this, and because we found complaints from users that the
zooming, panning, and dragging functionality in Leaflet was not as fluid as OpenSeadragon, we chose to use
OpenSeadragon as the image viewer for our application.

The Annotorious plugin supports annotations in theW3CWeb Annotation model[24] instead of the GeoJSON[12]
format supported by QuPath, which is produced by the two models. Therefore, we had to convert back-and-
forth between these two formats to view annotations, although this was not too challenging as they are both
JSON formats. Both formats also allow metadata about the annotations to be stored within the annotations
themselves. Labels, indicating both the kidney region and the feature-of-interest, allow annotations to be
filterable in our interface, as seen in Figure 10, and can also be changed in the case of a misclassification by
the models. Measurements can also be stored, allowing these to be viewed by users on our interface.

10



Figure 10: Annotation filter menu

As well as allowing annotations to be viewed on the OpenSeadragon image viewer, Annotorious (with its
additional plugins) also comes with functionality to create new polygon and freehand annotations, and edit
the labels of current annotations. When new annotations are created, measurements are automatically gen-
erated. However, Annotorious does not provide a backend for updating changes for the annotations, so we
propagate these changes to the W3C, GeoJSON, and CSV files when a user saves their changes, using JS
event handlers.

Figure 11: New annotation, just before being created

3.6 Moving Away From Streamlit

Streamlit[33] is a free and open-source Python web framework that allows programmers to prototype data-
based web apps. It has a wide variety of pre-built components that allow developers to make user interfaces
in a short amount of time. It is also often used to build data-driven dashboards and machine learning web
apps. The process of deploying a web app using Streamlit is straightforward and quick, which made it a
perfect choice for our group initially.

11



Figure 12: A prototype of KidneyCaliper implemented using Streamlit

By using Streamlit we were able to easily develop our web app while writing minimal frontend code since
we could use the pre-built components it provides. It meant that we could focus on developing our backend
pipeline without spending too much time on our web app code. Streamlit helped us a lot in the first iteration
of our project but we quickly discovered several drawbacks.

Firstly, adding a new component to Streamlit is not necessarily straightforward. When creating a new
Streamlit component, a lot of boilerplate code must be written. In the long run, if we were to keep devel-
oping our Streamlit architecture we would have to dedicate significant time on creating and maintaining
custom components.

Secondly, Streamlit does not support multi-page websites and custom HTTP endpoints. This makes routing
impossible and limits the complexity of web applications that can be built with the framework. We quickly
realised that the app that we were trying to build will be more complex than a standard one-page Streamlit
web app. For example, when using Streamlit, a pathologist would not be able to share a URL of the results
of one of their kidney images with their colleagues, something they indicated would be crucial.

In conclusion, we realised that Streamlit is simply not built for production-level, complex web applications.
After the first iteration, we had to make a difficult decision to either keep Streamlit or change our architecture
to a more standard React-based[16] frontend with a FastAPI[34] backend. It was a challenging choice because
of the time pressure of the project. Changing our architecture would allow us to introduce more complex
features faster and we would not have to worry about Streamlit limitations. However, we estimated that
migrating to the new architecture would take us about a week, which was a significant amount of time.
Despite this, we decided that changing our architecture would be the safer option since we would not have
to worry about being restricted in what we can do with our web app. In the end, the migration took us more
than a week, but it was worth it, as we ended up developing a lot of features that would not be possible to
implement with Streamlit.

3.7 Clarification: outline of modifications to the deep learning model code

The code in modules models.cortex_medulla_classifier and kidney_semantic_segmentation is based
on previous work by Sarapata[2] and Fu[3], respectively. To avoid ambiguity regarding the attribution, an
outline of modifications we made to their original code over the course of the project is listed below.

• Removal of training and visualisation utilities

• Changing the interface from a CLI to an API to allow library-style usage

12



– Returning raw annotation geometry as result, rather than plotting them

– Generating feature and region statistics

– Passing in parameters and file paths as a configuration object read from file rather than using
hard-coded values

• Factoring out elements present in both modules

• Various optimisations (See section 5.3 for details)

We did not make any modifications to the pre-trained model files. Other parts of the project (i.e. the
frontend, the web server, integrating the two models into an image processing pipeline) were written by us
from scratch.

4 Group Work Methodology / Project Management

4.1 Workflow

We followed the Kanban methodology for managing the work in our group. We found that Kanban aided
us in making the right decisions about prioritising work and identifying bottlenecks. We used GitHub’s
integrated Project Boards feature[35] to create a Kanban board that updated accordingly each time we
modified an issue or pull request in our repository. This meant we did not have to go out of our way to
maintain an up-to-date board.

In addition to GitHub’s Project Boards, we heavily relied on their Actions feature to implement continuous
testing and continuous deployment for our project. We used a CSG-issued Cloud VM[10] as the continuous
deployment target (reachable via http://kidneycaliper.lucidifai.com/). We found that having an in-
stance of the app always available and up-to-date with the latest changes helped us easily get feedback from
our clients and supervisor.

We decided early on in the project to introduce an obligatory pull request review policy: any changes
merged into the master branch had to be reviewed by at least one person other than the pull request
author. While this introduced some slowdowns to the development process, we found that the benefits of
reviews outweighed the cons. Reviews helped us fix bugs early on and offered a chance to refine design
decisions before the code was merged. The process also helped everyone on the team get familiar with all
parts of the codebase, even those they did not actively develop.

4.2 Weekly Meetings / Iteration Structure

The meetings that structured each of the project iterations were as follows:

• Weekly internal team meetings at 10 am on Mondays
We used those to decide what work we needed to do before next week and assign tasks.

• Weekly client meetings at 1 pm on Thursdays
During those meetings we discussed our ideas with Dr Candice Roufosse, a Clinical Senior Lecturer in
the Department of Immunology and Inflammation, and Callum Arthurs, a Digital Pathology Research
Assistant at Imperial. Their experience in histopathology and digital medical imaging proved essential
to making well-informed decisions about the scope of our product and prioritising various features over
others.

• Fortnightly supervisor meetings before each checkpoint
During the checkpoint meetings, we discussed our progress and upcoming iteration goals with our
supervisor, Dr Bernhard Kainz.

We found this schedule worked quite well, as it allowed us to work on a given set of features from Monday to
Thursday, then verify we were on the right track by demoing them to our clients on Thursday, then adjust
if necessary and finalise them by next Monday.

13

http://kidneycaliper.lucidifai.com/


5 Evaluation

5.1 Testing

5.1.1 Image Processing Pipeline Testing

We tested any new backend code we wrote using unit tests with Python’s unittest framework. The code
for interfacing with the neural networks by Sarapata and Fu[2][3] did not come with tests relevant to the
parts of their codebase we ended up using. We decided that writing unit tests for the existing code would
not be a good use of our time and also out of the scope of this project. However, we still wanted to test
this code, since we were going to modify it for the purposes of optimisation and interfacing with our code.
Therefore, we decided that the most suitable way to test it was integration testing.

Our integration tests involved sending requests to a test instance of the server that starts the deep learning
pipeline, checking the pipeline has been initiated, and checking the results are well-formatted once the
pipeline has finished.

5.1.2 Annotation Format Conversion Testing

We were also able to thoroughly test the code used for converting between GeoJSON[12] and W3C web[24]
annotation formats, using Python’s unittest framework. This was particularly useful as it was critical that
annotations were formatted correctly, or changes to the annotations on our interface might not be saved or
exported correctly, breaking compatibility with industry-standard software. These tests were part of the CI
pipeline for the project, helping us to easily spot bugs in the codebase.

5.2 User Evaluation

We found the feedback from our users to be invaluable over each iteration in crafting the application to
their intended workflow. Our user’s evaluation of the end product is listed below; we feel happy to have
accomplished our goal of making a positive impact in their workflows.

“Some of the tasks that I perform are time consuming and mundane, like counting glomeruli.
There are also untapped clinically useful data that we’re missing out on due to human limita-
tions. For example, research has shown that the average glomeruli and tubuli size are related to
patient outcomes, but we’re not able to provide a reliable estimate of these in clinical practice.
KidneyCaliper could save me time by performing those mundane tasks for me, and it could
also measure and provide statistics on all kidney structures, providing patients with the best
possible information on the state of their kidneys”

— Dr Candice Roufosse

“The KidneyCaliper application has essentially sped up my workflow by 1000% because
previously we had a set of deep learning models that were optimised from a research point of
view but not from a production point of view. So, when I provided this to the team, they
initially sped up the models by about 1000 fold. Slides that would take 20 minutes to run can be
analysed in under a minute, and this has empowered my whole workflow. Now I’m able to use
the platform to upload my data, and this is patient data for about 400 patients and it’s soon to
be a multi-centre study with thousands of patients. This is going to provide me with a tonne of
data to analyse further down the line.”

— Callum Arthurs

5.3 Optimisations

Here is a comparison of the processing speeds on a typical whole slide scan (17996x44931 pixels, 180MB
Aperio SVS format), on a laptop with i7-8570H with 12 threads, connected to an Nvidia GTX 980 GPU
(released in 2014).

14



Figure 13: Processing improvements to a typical whole slide image

Thanks to parallelisation, we have drastically improved the processing speeds of both models. The cortex-
medulla classifier saw an 82% improvement, from 3.35 patches/s to 6.10 patches/s. The semantic segmen-
tation part, which already has a more complex deep learning model and post-processing needs, enjoyed an
almost 9-fold speedup, from 0.312 patches/s to 3.06 patches/s. This improvement is also amplified by an
improved thresholding algorithm which means the models have far fewer patches (empty spaces) to process;
this is especially beneficial to semantic segmentation, which reduced the amount of work by 75%.

The overall processing time for this slide has been cut from more than 30 minutes to between 1-2 minutes.
Naturally, this figure will vary depending on the hardware in use and the size of the scan, but the improve-
ment will be for sure reflected in real workflows.

These speedups are not merely improvements, but a critical factor in the ultimate viability of Kidney-
Caliper for our users. A lab may produce some 400 whole slide scans per day. If each were to take around
30 minutes to process, then the rate of processing results will be lower than the rate of incoming scans,
meaning some slides will have to be skipped, and the insights contained within forever buried. With our
optimisations and reasonable hardware, researchers can leave KidneyCaliper to run overnight and have
all the results from the previous day ready by the morning. This also means that our users will not need
a dedicated server to run KidneyCaliper, as installing an Nvidia GPU produced within the last decade
onto their existing workstation will be sufficient.

5.4 Potential Extensions

5.4.1 In-Browser Deep-Learning Pipeline

One idea that we considered was the possibility of removing the entire backend of our solution as an exten-
sion project and allowing it to run in the browser. This would theoretically be possible using a JavaScript
library such as Tensorflow.js[36] to run the deep-learning models in-browser. It would also be possible to
convert the existing models that were written in PyTorch[37] into Tensorflow.js models.

The major benefit of removing any backend is that any patient or personal data is kept completely offline
and never sent to an external server. This makes it much more appropriate when used in a clinical setting,
where NHS patient data is very tightly locked down. All the images we are using are anonymised and have
been approved for use in this project, but if that were not the case, a solution that is completely local would
remove any potential privacy-related issues.

We ultimately decided against implementing this as it would require re-implementing the image processing
pipeline from scratch, and we could expect performance to be much worse due to multi-processing limitations

15



in-browser. Moreover, there are not as many high-quality scientific libraries available for JavaScript as there
are for Python, which would make writing the code for processing model output more challenging. Since
few pathologists will be using it at once, and due to personal data concerns, KidneyCaliper has been
designed to be primarily run on a local network, rather than being accessible from anywhere. This means
that in the intended use-case, private patient data will not be sent to an external server anyway, reducing
the importance of having everything in-browser.

5.4.2 Active Learning Loop

Another possible way to extend KidneyCaliper is to use it as a part of an active learning loop. Our work
provides an easy-to-use interface, which professionals can use to correct the labels outputted by the neural
networks. If desired, the corrections made by pathologists can then be included in a dataset used to retrain
the networks.

One of the reasons we did not further explore this path is that, due to medical data protection policies, it
is usually not acceptable to use the whole slide images that clinicians and researchers work with to train a
model.

5.4.3 User Authentication

From the beginning of the project, we realised that user authentication would be a ‘nice-to-have’ but would
not be very beneficial to the end-user. User authentication would allow only specific people to access specific
whole slide images, making them inaccessible to anybody else. This seems beneficial, particularly in our case
where patient data may be uploaded, but in reality, the pathologists we spoke with were very clear that they
expect KidneyCaliper to be used in a locally-hosted environment. There will be very few pathologists
working on the same instance of KidneyCaliper, and so they can be trusted to use the software correctly
and all users have full access to the data. This meant this was a low-priority feature to implement, as we
would have not had the time to implement more important features like the comparison of statistics on
historical runs.

Despite this, user authentication would be the next thing we implement as it makes KidneyCaliper more
appropriate for general use. As an interim solution, we have added the option to upload private images
which will not be displayed on the ‘past runs’ page, but are still accessible via a UUID that is copied to your
clipboard on submission. This is a primitive ‘user authentication’ system that works well for the current
pathologist’s workflow.

6 Ethical Considerations

6.1 A GDPR non-compliant Streamlit

While developing our prototype in the first iteration, we were disappointed to find out that Streamlit Inc.
collects telemetry containing personal information (such as IP addresses) from both the server on which
Streamlit is deployed, as well as from the browsers of all visitors to the Streamlit-based website. The
visitors are never informed of the data collection. Streamlit does inform the server administrator of data
collection during its installation and the method to disable it (by editing a configuration file after installa-
tion); however, the user has no choice but to agree to telemetry collection, and positive action is needed to
disable it. If the collection is enabled on the server-side, then Streamlit will also collect telemetry from visi-
tors to the site and send the data to Streamlit Inc. The visitor will not see a privacy notice unless they scroll
to the bottom, click to Streamlit’s homepage streamlit.io, scroll to the bottom again and click privacy policy.

It’s important to note that although Streamlit is open-source software that can be hosted by anyone on any
server, all telemetries are sent to Streamlit Inc., a for-profit business, not the hoster.

16



To collect and process personal information in compliance with UK data protection laws (primarily the UK
GDPR), Streamlit Inc. must rely on one or more of the six lawful bases laid out in the statute. Only two
can be potentially applicable to Streamlit: consent and legitimate interest. Commonly, software telemetry
collection relies on consent, which has a specific meaning within GDPR[38]:

‘consent’ of the data subject means any freely given, specific, informed and unambiguous indi-
cation of the data subject’s wishes by which he or she, by a statement or by clear affirmative
action, signifies agreement to the processing of personal data relating to him or her

Opt-in by default collection does not constitute valid consent. As such, we have made a pull request[39] to
Streamlit, making telemetry disabled by default instead. In the same PR, we have asked Streamlit which
legal basis, if not consent, is used to process personal information. Streamlit rejected our PR and cited
legitimate interest as their legal basis for processing telemetries.

Whether legitimate interest is applicable here is a subjective matter with a balancing exercise required. We
will note that even if telemetry collection constitutes legitimate interest, Streamlit Inc. is still required to
inform users that their personal information is being processed, the legal basis for processing, and that users
may opt out. This is usually contained in a document named privacy notice. However, as mentioned above,
for visitors to a self-hosted Streamlit site, this is not at all clearly presented.

While the data displayed through Streamlit is never sent to Streamlit Inc., we are nevertheless dissatisfied
with Streamlit’s approach to user privacy. Given the stringent data security context we are working in, this
was one of the drivers for us to move away from Streamlit.

6.2 Patient data handling

Since the beginning, we knew that we will have to be extremely cautious with the way that we are using
data, because of the medical nature of our project. As we mentioned before, our group focused on research
rather than clinical usage of our software. Therefore we did not have to follow all of the restrictions that a
medical device would have to follow[40]. Instead, we only had to follow the research ethics granted by IRAS
for the project[41].

According to those rules, all data that is used in the research, outside of the clinic has to be pseudo-
anonymised. It should be noted that the only patient data we are using in our project are kidney images.
We do not collect any other patient data such as names, NHS numbers, or any other identifiable informa-
tion. Researchers that we worked with obtained the renal transplant biopsy FFPE blocks from the Imperial
College Healthcare NHS Trust Tissue Bank[42] (REC 21/ES/0080) (approved project number R18040) and
scanned them using a Leica Aperio CS2 slide scanner. All of the kidney images were anonymised before we
were able to use them. The names have been randomly generated and the labels have been removed from the
slides making all of the images anonymous. Therefore we could lawfully use them during the development
process.

KidneyCaliper is currently hosted on the Department of Computing Virtual Machine, which is not a part
of the NHS trust network. As a result, any user that wants to upload their images to the website has
to anonymise them. However, KidneyCaliper can also be hosted by researchers locally. In that case, if
pathologists run our software on their machines in a secure NHS trust network (e.g. clinic or hospital) then
they may not have to anonymise their data as our system can be self-contained.

References

[1] S. Bainbridge, R. Cake, M. Meredith, P. Furness, and B. Gordon, “Testing times to come? an evaluation
of pathology capacity across the UK,” Nov. 2016.

[2] G. Sarapata, B. Kainz, and C. Roufosse, “Deep learning–based segmentation and quantification in
kidney transplant pathology,” Master’s thesis, Imperial College London, Sep 2021.

17



[3] J. Fu, B. Kainz, and C. Roufosse, “Mapping needle core biopsies to kidney zones using swin trans-
former,” Master’s thesis, Imperial College London, Sep 2021.

[4] A. Denic, J. Mathew, V. V. Nagineni, R. H. Thompson, B. C. Leibovich, L. O. Lerman, J. C. Lieske,
M. P. Alexander, J. J. Augustine, W. K. Kremers, and A. D. Rule, “Clinical and pathology findings
associate consistently with larger glomerular volume,” Journal of the American Society of Nephrology,
vol. 29, no. 7, 2018.

[5] “Cleveland Clinic - Glomerular Diseases.” https://my.clevelandclinic.org/health/diseases/

5993-glomerular-diseases.

[6] V. G. Puelles and J. F. Bertram, “Counting glomeruli and podocytes: rationale and methodologies,”
Current opinion in nephrology and hypertension, vol. 24, no. 3, pp. 224–30, 2015.

[7] A. Z. Rosenberg, M. Palmer, L. Merlino, J. P. Troost, A. Gasim, S. Bagnasco, C. Avila-Casado,
D. Johnstone, J. B. Hodgin, and C. Conway, “The application of digital pathology to improve accuracy
in glomerular enumeration in renal biopsies,” PLoS One, vol. 11, no. 6, 2016.

[8] Y. Ozluk, P. L. Blanco, M. Mengel, K. Solez, P. F. Halloran, and B. Sis, “Superiority of virtual
microscopy versus light microscopy in transplantation pathology,” Clinical transplantation, vol. 26,
no. 2, pp. 336–344, 2012.

[9] “Renal Tubule - National Cancer Institute.” https://www.cancer.gov/publications/

dictionaries/cancer-terms/def/renal-tubule.

[10] Computing Support Group, Department of Computing, Imperial College London, “Private IaaS Cloud.”
https://www.imperial.ac.uk/computing/people/csg/services/cloud/.

[11] P. Bankhead, M. B. Loughrey, J. A. Fernández, Y. Dombrowski, D. G. McArt, P. D. Dunne, S. McQuaid,
R. T. Gray, L. J. Murray, H. G. Coleman, J. A. James, M. Salto-Tellez, and P. W. Hamilton, “Qupath:
Open source software for digital pathology image analysis,” Scientific Reports, vol. 7, no. 1, p. 16878,
2017.

[12] “GeoJSON - format for encoding a variety of geographic data structures.” https://geojson.org/.

[13] “SQLite Home Page.” https://www.sqlite.org/.

[14] “PostgreSQL: The World’s Most Advanced Open Source Relational Database.” https://www.

postgresql.org/.

[15] “SQLAlchemy - The Database Toolkit for Python.” https://www.sqlalchemy.org/.

[16] “React - A JavaScript library for building user interfaces.” https://reactjs.org/.

[17] “Annotorious.” https://recogito.github.io/annotorious/.

[18] “Blueprint - A React-based UI toolkit for the web.” https://blueprintjs.com/.

[19] K. Verdieck, “react-mosaic.” https://github.com/nomcopter/react-mosaic, 01 2022.

[20] B. Frost, “Atomic design.” https://bradfrost.com/blog/post/atomic-web-design/, 06 2013.

[21] “Nielsen Norman Group: UX Training, Consulting, & Research.” https://www.nngroup.com/, 2019.

[22] “CUDA C++ programming guide.” https://docs.nvidia.com/cuda/cuda-c-programming-guide/

index.html#concurrent-kernel-execution.

[23] “Rasterio Python library GitHub repository.” https://github.com/rasterio/rasterio.

[24] R. Sanderson, P. Ciccarese, and B. Young, “Web annotation data model,” W3C Recommendation, Feb.
2017.

18

https://my.clevelandclinic.org/health/diseases/5993-glomerular-diseases
https://my.clevelandclinic.org/health/diseases/5993-glomerular-diseases
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/renal-tubule
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/renal-tubule
https://www.imperial.ac.uk/computing/people/csg/services/cloud/
https://geojson.org/
https://www.sqlite.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.sqlalchemy.org/
https://reactjs.org/
https://recogito.github.io/annotorious/
https://blueprintjs.com/
https://github.com/nomcopter/react-mosaic
https://bradfrost.com/blog/post/atomic-web-design/
https://www.nngroup.com/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#concurrent-kernel-execution
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#concurrent-kernel-execution
https://github.com/rasterio/rasterio


[25] “Polylabel - A fast algorithm for finding the pole of inaccessibility of a polygon.” https://github.

com/mapbox/polylabel.

[26] “Polylabel - A fast algorithm for finding the pole of inaccessibility of a polygon.” https://github.

com/mapbox/polylabel.

[27] “Pylylabel - A Rust implementation of the Polylabel algorithm.” https://pypi.org/project/

pylylabel/.

[28] J. Ball, “Include measurements when creating annotations from imported geojson data #835.” https:

//github.com/qupath/qupath/pull/835.

[29] “Recharts - Redefined chart library built with React and D3.” https://github.com/recharts/

recharts.

[30] V. Agafonkin, “Leaflet.” https://leafletjs.com/.

[31] “OpenSeadragon.” https://openseadragon.github.io/.

[32] “Getting Started with the OpenSeadragon Plugin.” https://recogito.github.io/annotorious/

getting-started/osd-plugin/.

[33] “Streamlit - The fastest way to build and share data apps.” https://streamlit.io/.

[34] “FastAPI framework, high performance, easy to learn, fast to code, ready for production.” https:

//fastapi.tiangolo.com/.

[35] “About project boards – GitHub Docs.” https://docs.github.com/en/

issues/organizing-your-work-with-project-boards/managing-project-boards/

about-project-boards.

[36] “TensorFlow.js is a library for machine learning in JavaScript.” https://www.tensorflow.org/js.

[37] “PyTorch Python library.” https://pytorch.org/.

[38] “Regulation (EU) 2016/679 of the European Parliament and of the Council,” OJ, vol. L 119, p. 1–88,
2016.

[39] A. Wang, “Stop collecting telemetry by default #3952.” https://github.com/streamlit/streamlit/
pull/3952.

[40] “A guide to good practice for digital and data-driven health technologies.” https://www.gov.uk/

government/publications/code-of-conduct-for-data-driven-health-and-care-technology/

initial-code-of-conduct-for-data-driven-health-and-care-technology.

[41] “Intergrated Research Application System.” https://www.myresearchproject.org.uk/.

[42] “Imperial College Health Tissue Bank.” https://www.imperial.ac.uk/tissuebank.

19

https://github.com/mapbox/polylabel
https://github.com/mapbox/polylabel
https://github.com/mapbox/polylabel
https://github.com/mapbox/polylabel
https://pypi.org/project/pylylabel/
https://pypi.org/project/pylylabel/
https://github.com/qupath/qupath/pull/835
https://github.com/qupath/qupath/pull/835
https://github.com/recharts/recharts
https://github.com/recharts/recharts
https://leafletjs.com/
https://openseadragon.github.io/
https://recogito.github.io/annotorious/getting-started/osd-plugin/
https://recogito.github.io/annotorious/getting-started/osd-plugin/
https://streamlit.io/
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://docs.github.com/en/issues/organizing-your-work-with-project-boards/managing-project-boards/about-project-boards
https://docs.github.com/en/issues/organizing-your-work-with-project-boards/managing-project-boards/about-project-boards
https://docs.github.com/en/issues/organizing-your-work-with-project-boards/managing-project-boards/about-project-boards
https://www.tensorflow.org/js
https://pytorch.org/
https://github.com/streamlit/streamlit/pull/3952
https://github.com/streamlit/streamlit/pull/3952
https://www.gov.uk/government/publications/code-of-conduct-for-data-driven-health-and-care-technology/initial-code-of-conduct-for-data-driven-health-and-care-technology
https://www.gov.uk/government/publications/code-of-conduct-for-data-driven-health-and-care-technology/initial-code-of-conduct-for-data-driven-health-and-care-technology
https://www.gov.uk/government/publications/code-of-conduct-for-data-driven-health-and-care-technology/initial-code-of-conduct-for-data-driven-health-and-care-technology
https://www.myresearchproject.org.uk/
https://www.imperial.ac.uk/tissuebank

	Executive Summary
	Background
	Solution

	Introduction
	Motivation
	Objectives
	Key Achievements

	Design and Implementation
	Design Overview and Motivation
	Frontend Interface & Experience
	Parallel Processing Pipeline
	Annotations and Statistics Generation
	GeoJSON and QuPath
	Generating Measurements
	Presenting Statistics on the Frontend

	Viewing and Editing Annotations
	Moving Away From Streamlit
	Clarification: outline of modifications to the deep learning model code

	Group Work Methodology / Project Management
	Workflow
	Weekly Meetings / Iteration Structure

	Evaluation
	Testing
	Image Processing Pipeline Testing
	Annotation Format Conversion Testing

	User Evaluation
	Optimisations
	Potential Extensions
	In-Browser Deep-Learning Pipeline
	Active Learning Loop
	User Authentication


	Ethical Considerations
	A GDPR non-compliant Streamlit
	Patient data handling


