Imperial College
London

INDIVIDUAL PROJECT REPORT

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Generating Histopathology Images With
Segmentation Masks, and Gigapixel Images
With Ultra-Resolution Cascaded Diffusion

Models

Supervisor:

Author: Dr Bernhard Kainz

James Ball Second Marker:
Dr Benjamin Hou

Abstract

With the recent advancements in Al image generation from the likes of Stable Diffusion, DALL-E
2, and Imagen, there are a lot of examples of using diffusion models to generate unseen high-
quality images. One clear application of this is to enrich medical datasets with synthetic images
where any performance gains can have a big impact.

This project uses a novel method to generate synthetic pairs of images and segmentation masks
to enrich such datasets. We train an unconditional diffusion model on histopathology images,
along with a baseline segmentation model, to generate synthetic segmentation masks. Then, we
fine-tune this diffusion model, conditioning it on segmentation masks, so that we can generate
variations of the same image. Finally, we can generate a synthetic dataset that can be used to
enrich the training of a segmentation model.

Furthermore, we introduce a novel architecture for generating ultra-resolution images that are
larger than a gigapixel in size using diffusion models. Ultra-Resolution Cascaded Diffusion
Models (URCDMs) consist of three Cascaded Diffusion Models (CDMs) operating at increasing
magnifications. The first CDM generates a full-scale but low-resolution image, and later CDMs
are conditioned on this image and ‘zoom in’ on the centre of it.

Overall, the novel method for synthesising segmentation and image pairs can lead to state-of-
the-art performance on downstream segmentation tasks. In addition, we evaluate their realism
by developing an evaluation platform to carry out a user study with expert pathologists. These
results show that formally trained experts cannot distinguish between real and synthetic images.

Furthermore, URCDMs successfully generate ultra-resolution images with long-distance spatial
coherency that look more realistic at multiple scales than outpainting. Whilst there is room
for improvement in generating higher-quality fine details, this is a big step towards extremely
high-resolution synthetic images that are indistinguishable from their real counterparts.

Acknowledgements

I would like to thank the following people that have helped me complete and evaluate this
project:

First of all, a big thank you to Sarah Cechnicka for working with me to evaluate the perfor-
mance of the diffusion models on downstream segmentation tasks, and for your help in evaluating
the realism of synthetic images.

I'm extremely grateful for the evaluation carried out by expert medical renal pathologists working
at North West London Pathology and Guy’s and St Thomas’ NHS Trust: Dr Catherine
Horsfield, Dr Naomi Simmonds, and Dr Andrew Smith, and with a special thank you to
Dr Candice Roufosse from the Department of Immunology & Inflammation, Imperial College,
who helped organise this small team and has been helpful for expert feedback throughout.

Thank you very much, Dr Bernhard Kainz for supervising this project, pushing me to extend
the project beyond what I originally envisioned, and giving useful guidance and advice.

Thank you, Dr Benjamin Hou for providing advice as a second marker.

I’d also like to thank Friedrich-Alexander-Universitiat Erlangen-Niirnberg for providing
access to their high-performance computing cluster that made this project possible.

Finally, thank you to my friends and family that have been great support throughout.

Contents

1 Introduction 3
1.1 Objectives o 3
1.2 Novel Contributions 3
1.3 Ethical Issues o . 4

2 Background 6
2.1 Denoising Diffusion Probabilistic Models 6
2.2 U-Net . . . e e 7
2.3 Conditioning U-Nets on the time step, t, and other parameters 8
2.4 Attention 8
2.5 High-resolution image synthesis o oL, 10
2.6 Inpainting e 11
2.7 Classifier-Free Guidance e 12
2.8 Text to Image Diffusion Models, 13
2.9 Generative Adversarial Networks (GANs) 13
2.10 Fréchet Inception Distance 14
2.11 Diffusion Models for Medical Image Synthesis 14

3 Unconditional and Segmentation-Mask-Conditioned Image Generation 15
3.1 Problem Statement 15
3.2 Proposed Method L 16
3.3 Implementation 17

3.3.1 Dataset Pre-processing L L o o 17
3.3.2 Models and Training Lo 17

4 Ultra-Resolution Cascaded Diffusion Models (URCDMs) 20
4.1 Problem Statement 20
4.2 Proposed Method 21
4.3 TImplementation L 23

4.3.1 Models and Training L oo 23
4.3.2 Outpainting and Parallel Processing 25
4.3.3 Dataset Pre-processing oo oo 27

5 Evaluation 29

5.1 Datasetso 29
5.1.1 Renal Histopathology Whole Slide Image Dataset 29
51.2 KUMAR e 30

5.2 Evaluation Plan. 31

5.3 Kidney Diffusion Evaluation Platform, 32
5.3.1 TImplementation 33

5.4 Unconditional Image Generation 34
54.1 Results L 34
5.4.2 Discussiono e e 36
5.4.3 Expert Pathologist User Study 36

5.5 Segmentation-Mask-Conditioned Diffusion Models 38

5.5.1 Results 39

5.5.2 DISCUSSION v . e e e e e e 40

5.6 Ultra-Resolution Cascaded Diffusion Model 41
5.6.1 Results 41

5.6.2 DISCusSion e e e 43

5.6.3 Expert Pathologist User Study 44

6 Conclusion and Future Work 45
6.1 Conclusion e 45
6.2 Future Work e 45
6.2.1 Ultra-Resolution Cascaded Diffusion Model Improvements 45

6.2.2 Model Distillation 47

7 References 48

Chapter 1

Introduction

1.1 Objectives

This project has two main objectives. The first objective is to use diffusion models to generate
realistic-looking histopathology imagery, along with segmentation masks. By using these images
to enrich data-limited datasets, we aim to improve performance on downstream machine learning
tasks as an advanced method of data augmentation. This objective is explored in Section 3.

Unconditionally generated synthetic histopathology image patches are valuable on their own
as they can be used as an alternative to real medical image datasets that are hard to obtain.
However, synthetic images that are conditioned on segmentation masks are much more useful.
Labelling histopathology images is a very costly and time-consuming job that requires formally-
trained pathologists, so synthesising this data is valuable. Furthermore, they allow variations
of an image to be generated, by segmenting an image and then re-generating the image us-
ing the same segmentation mask. Combined with conditional image generation using clinical
parameters, such as tissue type (see Figure 5.8e-h), this can be quite powerful.

The second objective is to extend this capability to ultra-resolution images: those that are
greater than a gigapixel (1,000,000,000 pixels) in size. This poses several challenges, such as
memory constraints, sampling times, and lack of training data. This objective is explored in
Section 4.

A Whole Slide Image (WSI) is an extremely high-resolution digital image of a glass slide with
tissue, captured by a slide scanner. These ultra-resolution images are usually split into patches
to increase the amount of training data and computational complexity. However, pathologists
typically analyse Whole Slide Images in their entirety; zooming in and out at multiple scales.
Synthesising ultra-resolution imagery could allow for more complex downstream algorithms that
operate on the entire image at different scales due to the additional training data it provides.
Furthermore, high-resolution images are already used at multiple scales in other domains such
as satellite imagery [1]. A novel method of synthesising ultra-resolution images is evaluated on
the Whole Slide Image dataset discussed in Section 5.1.1.

1.2 Novel Contributions

On top of unconditionally generating images with existing architectures in the new context of
renal histopathology, this project will explore some novel applications of diffusion models:

Whilst generating histopathology patches conditioned on segmentation masks has already been
demonstrated [2], we further condition generation on clinical parameters such as the tissue type.
We also develop a novel method of generating synthetic pairs of segmentation masks and images
to enrich datasets that leads to state-of-the-art Dice scores on data-limited datasets.

Contextually accurate large-scale image generation of large regions of kidney tissue by utilising
outpainting [3, 4] is a challenging area to explore. Methods such as Anyres-GAN [5] achieve this
using GANs and allow for any resolution image generation at inference time, but only evaluate
sub-gigapixel image generation. The Ultra Resolution Cascaded Diffusion Model architecture
is a novel method of achieving high-quality and extremely high-resolution images applied to
diffusion models that are known to outperform GANs [6].

1.3 Ethical Issues

Human samples used in this research project were obtained from the Imperial College Health-
care Tissue & Biobank (ICHTB). ICHTB is supported by the National Institute for Health
Research (NIHR) Biomedical Research Centre based at Imperial College Healthcare NHS Trust
and Imperial College London. ICHTB is approved by Wales REC3 to release human material for
research (22/WA /2836) and the samples for this project are from research application number
R18040.

\ | YEs [No |
SECTION 1: HUMANS
Does your project involve human participants? v
SECTION 2: PROTECTION OF PERSONAL DATA
Does your project involve personal data collection and/or processing? v

Does it involve the collection and /or processing of sensitive personal data (e.g. | v/
health, sexual lifestyle, ethnicity, political opinion, religious or philosophical

conviction)?
Does it involve processing of genetic information? v
Does it involve tracking or observation of participants? It should be noted v

that this issue is not limited to surveillance or localization data. It also
applies to Wan data such as IP address, MACs, cookies etc.

Does your project involve further processing of previously collected personal | v/
data (secondary use)? For example Does your project involve merging exist-
ing data sets?

SECTION 3: ANIMALS

Does your project involve animals? v
SECTION 4: DEVELOPING COUNTRIES

Does your project involve developing countries? v
If your project involves low and/or lower-middle income countries, are any v
benefit-sharing actions planned?

Could the situation in the country put the individuals taking part in the v

project at risk?

SECTION 5: ENVIRONMENTAL PROTECTION AND SAFETY
Does your project involve the use of elements that may cause harm to the v
environment, animals or plants?

Does your project involve the use of elements that may cause harm to humans, v
including project staff?

SECTION 6: DUAL USE

Does your project have the potential for military applications? v
Does your project have an exclusive civilian application focus? v
Will your project use or produce goods or information that will require export v

licenses in accordance with legislation on dual use items?

Does your project affect current standards in military ethics — e.g., global
ban on weapons of mass destruction, issues of proportionality, discrimination
of combatants and accountability in drone and autonomous robotics devel-
opments, incendiary or laser weapons?

SECTION 7: MISUSE

Does your project have the potential for malevolent /criminal /terrorist abuse?

Does your project involve information on/or the use of biological-, chemical-,
nuclear/radiological-security sensitive materials and explosives, and means
of their delivery?

Does your project involve the development of technologies or the creation of
information that could have severe negative impacts on human rights stan-
dards (e.g. privacy, stigmatization, discrimination), if misapplied?

Does your project have the potential for terrorist or criminal abuse e.g. in-
frastructural vulnerability studies, cybersecurity related project?

SECTION 8: LEGAL ISSUES

Will your project use or produce software for which there are copyright li-
censing implications?

Will your project use or produce goods or information for which there are
data protection, or other legal implications?

SECTION 9: OTHER ETHICS ISSUES

Are there any other ethics issues that should be taken into consideration?

Chapter 2

Background

2.1 Denoising Diffusion Probabilistic Models

Much of the theory presented in this section will refer to the technical explanation in “Denoising
Diffusion Probabilistic Models” authored by Ho et al. [7], as well as “Diffusion Models Beat
GANs on Image Synthesis” authored by Prafulla Dhariwal and Alex Nichol [6].

A Denoising Diffusion Probabilistic Model (DDPM), or simply diffusion model, is a generative
model that learns how to gradually remove noise from an image in a series of time steps. This,
trained on a dataset of images, will learn what parts of an image are noise and what parts of an
image should be restored and retained.

Since diffusion models are trained to remove a small amount of noise from images of various
different prior levels of noise, they can be applied in sequence on an initial image that has no
distinguishing features and consists of only noise. The model infers details from this noisy image
and generates a new random image from the noise. This is called the reverse diffusion process.

The forward diffusion process is a Markov chain that adds some amount of noise to the image
in a number of time steps. This is trivially defined and no training is required. Each image in
the forward diffusion process is represented as x1, ..., x7, where T is the number of time steps
in the process, and z7 is an image that is indistinguishable from a completely noisy image. g
is the original input image with no noise applied. The noise added from image x;—; to image
x; is modelled by ¢, a Gaussian distribution, and the amount of noise depends on the variance
schedule of the model, 31, ..., Br:

q(@e|ze—1) 2N (2, 0= /1 = Biwi_1,0° = BiI) (2.1)

At time step t, the variance schedule is f;, which is usually defined as a hyperparameter of the
model [7]. To provide some context as to the values used in practice, Ho et al. [7] set the number
of time steps 7' = 1000 and values for S, ..., B to linearly increase between 10~ and 0.02.

Ho et al. [7] show it is possible to rewrite 2.1 in closed form for the purposes of efficient training:

q(xtlzo) = N(we, p = Vo, 0 = (1 — ar)) (2.2)

Where oy £ 1 — 5 and a; = Hts:1 «s. Using the closed form, we can train the model with
various input images at random time steps, without first calculating all previous less noisy
images, allowing more diverse training images in each batch. This lets us train on x; without
previously calculating x1, ..., ;1.

To learn how to remove noise in the reverse diffusion process, we need to model pg(x;—1|x;) with
parameters #. This is a Gaussian distribution that produces the image at the previous time step
in the forward diffusion process:

128 64 64 2

input
image
tile

output
||| segmentation
& map

¥
¥

392 x 392

572 x 572
570 x 570
68 x 568

’ 128 128

2842

& > | =»conv 3x3, ReLU
el copy and crop

i # s pool 222
° 1024 45 B 4 up-conv 2x2
S =» conv 1x1

28

Figure 2.1: Classical U-Net architecture presented by Olaf Ronneberger et al. [14]

p@(l‘t—l‘xt) é N(It—l)ﬂ = M9($t7t)70-2 - E@(It, t)) (23)

Whilst we could train a model for pp and ¥y, Ho et al. [7] find that you can instead predict the
noise added to the image instead at a time step. This is represented by €y, a model to predict
the noise € added to x;—1 to produce x;. With the predicted noise at time step ¢, ep(x¢,t), we
can trivially produce an estimate of x;_1:

1 B

— | 2y — ———=¢p(x4, 1 2.4
= (o= (o) (2.4)
With these equations in mind, Ho et al. [7] formulate a simple loss function for evaluating the
quality of the reverse diffusion process model:

Tt—1 =

['simple(g) £]Et,mo,e [”6 - 69(\/0715-%'0 +vV1- Qi€ t)HQ] (25)

All diffusion models use the fundamental theory presented by Ho et al. [7], and later examples
build extensions such as super-resolution networks that upscale the low-resolution image gener-
ated [8, 9], and perform conditional image generation on text [10, 11, 12] or clinical data [13, 2].

2.2 U-Net

Now that we know we need to model €y(x¢,t), the predicted noise at time step ¢, and we
know how to optimise this using 2.5, we need to choose an appropriate model architecture
for the reverse diffusion process. Ho et al. [7] use a model based on a U-Net [14] convolutional
neural network architecture for this purpose. U-Nets have proven useful in image-based machine
learning applications such as in segmentation [14], making them a natural choice for predicting
the noise in an image.

Figure 2.1 shows the contracting and expanding paths of a U-Net. The first contracting path
takes a high-resolution input, i.e. an image, and applies several rounds of convolution which
increases the number of channels, followed by a pooling stage that performs downsampling.
The contracting stage aims to capture the context of the input image [14]. The expanding
path is mostly symmetric, with transposed convolution used instead of pooling. The expanding
path increases the resolution, and also takes as input the cropped feature map of the output of

the respective stage in the contracting path [14]. For diffusion models, the input and output
dimensions of the U-Net are the same since the U-Net predicts the noise portion of the input
image.

2.3 Conditioning U-Nets on the time step, ¢, and other param-
eters

The same U-Net model is used regardless of the time step ¢, meaning parameters are shared for
different values of t. Therefore, ¢ must be specified as a parameter to each block of the U-Net
somehow. Ho et al. [7] use the Transformer sinusoidal position encoding [15] to condition the
input with t.

The sinusoidal position encoding used in the Transformer architecture [15] is defined as follows:

t
PE;0) = sin | —— 2.6
(t.20) Sm(loooo%/d) (2:6)
PE co _t (2.7)
. — S - .
(¢,2i41) 1000021/d

where d is the chosen dimension of the encoding, and 7 is the index of the current dimension.
Vaswani et al. [15] hypothesise that this function would allow the model to learn the relative

positions between inputs, as PE;; can be represented as a linear function of PE; for some offset
k.

Importantly, this allows one to generate an encoding for any number of dimensions; something
that is important when conditioning the U-Net on the positional encoding since the dimensions
of the U-Net’s input and the encoding must match.

Conditioning can be performed by simply adding the encodings to the input [7], hence why the
dimension of the positional encoding must be the same as the input. Alternatively, you could
apply a method such as FiLM [16] that uses a separate neural network that learns, using the
positional encodings, how to condition the input by scaling and shifting the input. Currently,
implementations of state-of-the-art text-to-image generators, DALL-E 2 [11] and Imagen [12],
such as imagen-pytorch [17] use cross-attention [15] to combine the encodings with the input.
This is explained in detail in Section 2.4.

2.4 Attention

Intuitively, attention can be thought of as a mechanism to give parts of the input different
weights depending on how important they are, whilst decreasing the weight of less important
parts. This enables a model to pay closer ‘attention’ to certain parts of the input and put less
focus on others. The aim is to have a model that puts more effort into learning important things.

In the context of diffusion models, the most important parts of the input are high-frequency
details that change in colour or shape quickly. For example, we don’t care about the detail in
the graininess of the sky taken at night as much as we do the facial features and edges of the
subject of the image, so we should pay stronger attention to that and try to focus our learning
efforts.

Ho et al. [7] use attention mechanisms between each convolutional block based on those utilised
in the Transformer architecture [15]. These increase the quality of the image by paying closer
attention to high-frequency details in the image [18]. Attention is also utilised in diffusion
models when conditioning U-Nets with text embeddings in implementations such as in the

T T

[MatMul] softmaz(T

f

[Softmax J [SoftmaTw(QKT)

|
[Scale | L wnl }
1

|

| MatMul | s
. I
Q K 1% Q K v
(a) Operations involved (b) Matrix output

Figure 2.2: Scaled Dot-Product Attention as presented in “Attention Is All You Need” [15]

imagen-pytorch library [17]. Whilst initially utilised for textual information, aspects from the
Transformer architecture such as attention are also very effective for image generation [18].

The attention mechanism described by Vaswani et al. [15] is Scaled-Dot-Product Attention, as
seen in Figure 2.2. The attention function has three inputs, (), K, and V', which are matrices of
queries, keys, and values. Each individual query and key has the same dimension, d;. Vaswani et
al. [15] introduce a few different applications of this: namely self-attention, and ‘encoder-decoder
attention’, otherwise called cross-attention.

In self-attention, @), K, and V are all generated from the input embeddings by multiplying the
input embeddings with each of the corresponding weight matrices W<, WX, and WV which
are learned during training. However, in cross-attention, one embedding is used to generate
@, and another embedding is used to generate both K and V. Both applications have the
same underlying attention function, as in Figure 2.2. Importantly, when using multiple different
embeddings in cross-attention, they must have the same dimension.

Self-attention is employed in diffusion models between the convolutional blocks of the U-Net [7],
whereas cross-attention is useful for conditioning the input embeddings into the U-Net on some
conditioning or contextual embeddings (e.g. age of a patient, or time since biopsy). This works
by generating) with the input embeddings and K and V with the contextual embeddings.

In practice, the scaled dot-product attention is simple to implement, and the attention function
is defined as follows:

QK"
Vg

where Q, K, and V are generated by multiplying embeddings by W&, WX and WV respectively,
and dj, is the dimension of an individual query/key.

Attention(Q, K, V) = softmax(

W (2.8)

Vaswani et al. [15] find it beneficial to perform this multiple times with many different weight
matrices. They describe each application of the attention function as a ‘head’, with h heads
in total, and hence call this Multi-Head Attention. To achieve this, there are now weight
matrices WiQ, WiK , and WZ-V for all 7 € [0,h) used to generate @Q;, K;, and V;, and calculate
Attention(Q;, K;,V;) = Z;. Each output Z; can then be concatenated to form a matrix Zeoncar =
[Z0, ..y Zn—1]. Since Zeoncar is not the same dimension as the output in single-head attention, a

final weight matrix WO is needed to project Zeoncat into the same dimensions as before.

Concatenated High-res
Concatenated Med-res noise & med-res output

Random Low-res noise & low-res output

noise output

H Upscale
U-Net

Upscale
U U-Net U-Net
Base Super-res Super-res
model model 1 model 2

Figure 2.3: Cascaded Diffusion Model architecture for high-resolution image synthesis [9]

Whilst offering better performance, multi-head attention has a similar computational cost to
single-head attention since the dimension of @), K, and V are reduced by a factor of h, the
number of heads [15].

Whilst described here as weight matrices, attention functions consist of multiple fully-connected
neural networks that produce @), K, and V for each head. Therefore, they are trained in the
way you would expect with gradient descent, allowing them to learn what inputs to best pay
attention to.

2.5 High-resolution image synthesis

Naturally, when generating images, there is a motivation to increase the quality of the image
by generating higher resolution images. The first obvious thing to try is just to increase the
input resolution and output resolution so that you are performing the same diffusion process
on a high-resolution image and then denoising a high-resolution noise image at inference time.
However, as the resolution increases, the number of iterative refinement steps must increase for
the quality of the image to remain the same [8]. This leads to a single very large diffusion model.

Saharia et al. [9] propose cascading the diffusion models in several ‘super-resolution’ stages in
order to independently train several small models, rather than one large model. For example,
you could start with a diffusion model that generates 64 x 64 pixel images, and then use two
super-resolution diffusion models to upscale this from 64 x 64 — 256 x 256 and then from
256 x 256 — 1024 x 1024. This leads to faster sampling as fewer iterative refinement steps are
needed per model, and allows you to easily train each model in parallel [9].

Cascaded Diffusion Models (CDMs) work by first generating a low-resolution image with a base
model, and using the output from this to condition the denoising process of a U-Net used for
super-resolution. Conditioning can be performed in various ways, as discussed in Section 2.3,
but for image conditioning Ho et al. [9] first upsample the low-resolution image to match the
resolution of the input and then perform channel-wise concatenation with the input to the
super-resolution U-Net. Further super-resolution stages condition using the lower-resolution
image generated in the previous stage in the same way. An overview of this architecture is
presented in Figure 2.3.

Since CDMs have separate stages for initial image generation and super-resolution, the model
capacity of each stage can be tailored for the best performance. CDMs tend to perform best
when most of the model capacity is focused on the base low-resolution model, as they are most
important for image quality, and are quicker to train [9].

10

New
image patch

Input image to generate Extended output image
oty b5 ooty E iy 'Q
o NN < Ve e S < :;_/\:
o 60 e o N o G Jaaii TN ¥
o 9 - 1 e \ oxt » 4 - v 9 i]
% @ : “ ! 3 o
: "‘«,‘»r, A "\?rr, s "«,‘»r, =

Figure 2.4: Outpainting [4] process by using inpainting [3] on part of a previously-generated
image to extend the bounds of the original

Ho et al. [9] propose ‘conditioning augmentation’ to improve the quality of the super-resolution
networks. This is the process of augmenting the lower-resolution output before providing it as
input into the super-resolution networks, by the way of blurring or distorting the image in some
way. This might seem counter-intuitive at first - better results are obtained by making inputs to
the super-resolution networks lower quality - but Ho et al. [9] explain that these augmentations
prevent the super-resolution networks from overfitting to inaccuracies or imperfections in the
lower-resolution output. The base model might not be good enough quality compared with the
images they are trained on, so applying conditioning augmentation tries to obscure any of these
quality issues so that the super-resolution networks ‘gloss over’ them.

Conditioning augmentation is applied in a few different ways. These can be summarised by
either applying some Gaussian blur to the low-resolution image or adding some Gaussian noise.
Ho et al. [9] find that blurring the image works best at higher resolutions, whereas adding noise
to the image is best at lower resolutions. Blurring augmentation is simply implemented by
convolving a Gaussian filter with a 3 x 3 kernel over the image [9].

For lower resolutions, it is better to add some form of Gaussian noise, either by stopping the
reverse diffusion process early (meaning that not all of the noise is removed from the image), or
adding Gaussian noise to the denoised image after all time steps. This is referred to as ‘truncated
conditioning augmentation’ and ‘non-truncated conditioning augmentation’ respectively [9]. For
a trained model, there is little to no performance benefit of using truncated over non-truncated
augmentation, and there are practical benefits of only needing to store the final denoised image
when using non-truncated augmentation, so this is used in practice [9].

2.6 Inpainting

Inpainting is the process of generating parts of an image that are masked out using a diffusion
model [3]. This means that you provide a real image and ask the diffusion model to regenerate
part of the image, taking the context of the surrounding image into account. Applications of
this could be changing the facial expression of a person by masking out their mouth or restoring
distorted images.

Whilst there could be some utility in inpainting for this project, for example, to fine-tune a
kidney biopsy image to make it look more realistic, ‘outpainting’ is likely to be much more
applicable. Outpainting precedes diffusion models [19], but the word has been popularised more
recently by OpenAI’s DALL-E [4] in the context of diffusion models. It refers to using inpainting
to extend the bounds of the original image by generating a new patch of an image that partially
overlaps with the original, and masking out any part that doesn’t overlap so that it is filled in
by the diffusion model. Figure 2.4 demonstrates this process.

Inpainting is achievable without any fine-tuning, retraining, or consideration prior to training,
meaning it can be performed on any off-the-shelf diffusion model [3]. Lugmayr et al. [3] describe

11

the method below for inpainting.

At time step t we have the original image, xg, that is to be inpainted, so we can add noise

according to the variance schedule as described in Equation 2.2 to get z¥"¢“". If we sample
from the diffusion model, like in Equation 2.4, we can generate :U}ff’f”ow" from z;. Given a mask,

m, that indicates which pixels in mfﬁ‘l’“’" should be kept, we can then generate x;_1 as follows:

Ti_1 =m Oz 4 (1 —m) @ gunknown (2.9)

where m ©® x are the pixels that we want to keep from the original image, and (1 — m) ® x are
the pixels that should be regenerated by the model.

This method is very intuitive, and applying it directly in a standard forward-pass through a
diffusion model might match the general shape and colour of surrounding pixels, but it will yield
semantically incorrect results [3]. Lugmayr et al. [3] speculate that as Equation 2.9 generates
x?ﬁ’f“ow" without any consideration of :L“ff‘l’w”, it does not harmonise well with xfﬁ?w". Although
this harmonisation will improve in each time step, since sampling uses x; as input which is the
inpainted image from the previous time step, it will not harmonise before the final time step.
Combining this with the decreasing variance of noise according to the variance schedule, there
is limited time for the inpainted region to harmonise.

Lugmayr et al. [3] use a technique called resampling to increase the harmonisation at each time
step. This repeats reverse and forward diffusion steps r times at each time step, meaning that
noise is added to an inharmonious image, distorting it, and then the diffusion model denoises the
image slightly. Since diffusion models are trained to generate images in the same distribution as
the data they were trained on, denoising multiple times in a time step will bring the inharmonious
image closer to a more semantically correct image. Lugmayr et al. [3] find that » = 10 (i.e.
removing and then adding noise 10 times) works well in practice.

On top of resampling, the idea of a ‘jump length’ is added by Lugmayr et al. [3]. This applies
the resampling described above over an increased number of forward and reverse diffusion steps
at a time. At the initial time step T in the reverse diffusion process, j reverse diffusion steps will
be applied (removing noise), followed by j forward diffusion steps (adding noise). This is then
repeated, as before, r times. Lugmayr et al. [3] demonstrate that this further increases harmon-
isation in the image. Unsurprisingly, adding repeated reverse diffusion steps by resampling or
increasing the jump length can significantly increase the time taken to perform inpainting.

2.7 Classifier-Free Guidance

Ho et al. [20] introduce classifier-free guidance as a simple way to trade-off the diversity in types
of images generated by the diffusion process for image quality. Prior generative models such
as GANs can make this trade-off simply by changing the range or variance of the noise input
into the model at sample time, but this decreases the image quality in diffusion models [20].
Dhariwal et al. [6] demonstrate that ‘classifier guidance’ is achievable by training an additional
classifier alongside the diffusion model, and partially using the gradient of the classifier during
training. Mixing the gradient to varying degrees allows you to make the trade-off between
diversity and quality. However, training an additional classifier adds significant complexity;
hence why classifier-free guidance is desired.

Classifier-free guidance works by training both a conditional and unconditional diffusion model
at the same time. In practice, only a single model is used for both, saving on training time and
complexity, by specifying a null token as input for the condition when training unconditionally.
Formally, this gives us two models: €y(x¢,c) where ¢ is what we are conditioning the image
on (e.g. clinical parameters), and €y(z;) which is an unconditional model. In reality, €g(z;) =
€g(zt,c = 0), where ¢ is the null token, as we can reuse the same model for both tasks.

12

At sample time the classifier guidance weight, w, is specified to control this trade-off. This gives
the new equation for sampling the noise present in an image:

€g(xe,c) = (1 +w)eg(xy,) — weg(ay) (2.10)

Intuitively, the diversity comes from the unconditional model, whereas the quality and align-
ment with the conditions come from the conditional model. Ho et al. [20] propose training the
unconditional model (i.e. inputting a null token) with probability puncond, Which they find gives
the best performance when pypeond € {0.1,0.2}. At sample time, small weights (w = 0.1 or
w = 0.3) provide the best results for diversity, whereas large weights (w > 4) give the highest
quality results [20].

Very large guidance weights further increase alignment between the image and the condition,
but harm image quality, resulting in over-saturated and unnatural images [20]. Imagen [12] fixes
this by thresholding the image dynamically, normalising the image to whatever range is present
in the predicted image. This significantly improves photorealism when using large weights [12].

2.8 Text to Image Diffusion Models

Whilst not strictly relevant to generating biopsy images conditioning on non-textual data, I
will very briefly mention the Imagen [12] text-to-image diffusion model as it culminates all
the background presented. imagen-pytorch [17], the library I will be using, is based on the
architecture in this paper.

Imagen [12] uses a set of three cascaded diffusion models, starting with a base model that
generates 64x64 images, and then using two super-resolution models to upscale to 256x256 and
then 1024x1024. Conditioning augmentation is used in super-resolution networks to improve
sample quality.

imagen-pytorch [17] is an unofficial open-source implementation of the architecture and tech-
niques used to create Imagen [12] with the groundwork laid out to create these models. It offers
most of what is required to make this project possible, including an interface to create U-Nets,
support for cascaded diffusion models with multiple U-Nets, and basic inpainting. Since it is
based on Imagen [12], it expects textual conditioning in the form of text embeddings. This input
can be trivially changed into any arbitrary embedding, or even removed for unconditional image
generation, making this a non-issue.

2.9 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) [21] were introduced as a new framework for data
generation where two models are trained at the same time, one that generates fake data, G,
and another that classifies images as either generated or real, D. These are called the generator
and discriminator respectively. During training, G tries to maximise the chance that D makes
a mistake, leading to a two-player minimax game between the models [21].

One of many improvements to the original architecture presented was the progressive growth
of GANs to improve their quality, stability, and variation [22]. This works by growing both
the generator and discriminator from smaller models to larger models - new layers are added to
each, increasing their resolution during training [22].

StyleGAN [23] builds on top of this progressive architecture by improving the generator model.
StyleGAN removes the traditional random latent code used as the input into the generator and
replaces it with a vector representing the style of the image. This style vector is generated
by sampling a latent code, like before, but then passing it through a fully-connected neural

13

network. The style is then combined at each stage of the progressive GAN to incorporate it into
the generation of the image. Since the style is used at each stage, it can learn representations
at different scales - for example skin colour at a coarse scale and eye colour at a finer scale [23].
Noise is also injected into each layer to increase variety. This along with other smaller changes,
led to state-of-the-art performance for StyleGAN [23].

Incremental improvements between StyleGAN [23], StyleGAN2 [24], and StyleGAN3 [25] led to
state-of-the-art image synthesis performance at the time, with diffusion models then achieving
state-of-the-art later [6]. Because of this, using StyleGAN3 is sensible as a baseline model
architecture to compare image quality and diversity against using the FID metric [26]. This is
needed given that the kidney dataset described in Section 5.1.1 used in this project is private
and has no baseline results.

2.10 Fréchet Inception Distance

The Fréchet Inception Distance [26] (FID) is a metric to evaluate the image quality and diversity
of generated images when compared to their real counterparts. This is used as a standard in
evaluating new generative models such as Imagen [12] and DALL-E 2 [11].

Calculating the FID is most useful when it is compared to benchmarks of other generative
models on a public dataset, as it allows for a direct quantitative comparison of the quality and
diversity of images generated by different models. Once an FID score is calculated for a baseline
generative model, improvements in different models can be quantified.

The FID compares two Gaussian distributions N (p,, 3,), and N (pg, Xg4), where 7 and g rep-
resent real and generated images respectively. p and X are found by fitting to latent-space
feature vectors of real images and generated images. The feature vectors are typically generated
by inputting the real and generated images into a pre-trained Inception v3 [27] model trained on
the ImageNet [28] dataset. The Fréchet Inception Distance [26] is therefore defined as follows:

FIDN (s 1), N (g, Bg)) = [t — pag]® — t2(2y + Z, — 2(2,3,)?) (2.11)

For two identical sets of images, i.e. comparing real images with themselves, the FID score will
be 0. This means the closer to 0 that the FID is, the better the image quality is.

2.11 Diffusion Models for Medical Image Synthesis

There has been success using diffusion models to generate synthetic medical images, for example
in generating brain images [13], and in histopathology [2], which is more relevant to this project.
Both point to the lack of required medical datasets for training complex models. Specifically, Ottl
et al. [2] mention the class imbalance present when segmenting tumours in histopathology images,
something relevant to renal histopathology as cell structures such as glomeruli are significantly
rarer than tubules in the kidney dataset used in this project. Ottl et al. [2] condition the
image generation on a segmentation mask, allowing the segmentation masks for underrepresented
features to be used to generate more images for that class. Using this to create a more balanced
dataset and re-training improved performance in their segmentation model. In addition, Pinaya
et al. [13] successfully condition the image generation on various clinical parameters, including
age, sex, and brain structure volumes.

14

Chapter 3

Unconditional and
Segmentation-Mask-Conditioned
Image (Generation

This chapter details a novel method of generating realistic synthetic images and corresponding
segmentation masks to enrich existing datasets. The goal is to improve downstream performance
by training a segmentation model on both real and synthetic data. We start with generating
images that are not conditioned on any segmentation mask (but may or may not be conditioned
on clinical parameters, such as the type of tissue present), as this is a necessary first step. Then,
we proceed by utilising a pre-trained baseline segmentation model to segment these images.
Finally, using both the segmentation masks generated, we can generate unseen variations of
images using the same segmentation mask, including by changing the clinical parameters used
to generate the image.

For clarity, much of this chapter details prior work completed as part of this project by myself
and Sarah Cechnicka [29]. T worked on developing and training the diffusion models, and Sarah
worked on the segmentation models and evaluated the diffusion models on the downstream
segmentation task using the KUMAR dataset [30]. For the purposes of this report, I will be
presenting much of what is in this paper that was completed as part of this project, with a focus
on diffusion models.

3.1 Problem Statement

Annotating large Whole Slide Images (WSI) is an extremely laborious task carried out by expert
pathologists, motivating the automatic annotation of histopathology images using segmentation
models such as U-Nets [14]. Such models benefit from large datasets, which geometric image
augmentation can try and emulate but cannot replace. Geometric image augmentation is typ-
ically limited to basic operations such as flipping and rotating, with the assumption that the
image is still sensible after augmentation. Our hypothesis is that enriching data-limited datasets
with synthetic images generated using diffusion models conditioned on segmentation masks will
provide better performance than traditional image augmentation methods.

There are two separate measures of success for this chapter:

Realistic-looking images generated. The images generated by both the unconditional
and segmentation-mask-conditioned models should be close in realism to real images. This will
be evaluated by having expert pathologists compare generated images to real images, as well as
by comparing baseline results from a StyleGAN3 [25] model.

Improved performance on downstream segmentation task. Using synthetic image

15

and segmentation mask pairs to supplement an existing real dataset must provide a performance
advantage for this to be successful. This will be evaluated by training a baseline segmentation
model trained on real data, and then generating images and retraining the segmentation model
using synthetic data as well as real data and comparing performance metrics.

3.2 Proposed Method

Let us denote the image space as X and the segmentation mask space as). The goal is to
generate realistic but new pairings within the joint space X x). First, a baseline segmentation
model is considered My : X — Y that performs pixel-wise classification.

Ideally, we would perform an inversion of this baseline model, but practically inverting the
segmentation model to p(x|y, #) is not possible, as the transformation Mjy is not bijective, and
inverting it would yield many plausible samples from X. However, the inversion can be modelled
by sampling single realistic images & € X given y €) and additional random noise z ~ N (0, o)
holding the random state of our generative process. Modelling this approach can be achieved
through diffusion probabilistic models [7].

Therefore, we can define Dy : Z — X, where Z is a set of Gaussian noise samples, as our
unconditional diffusion model that generates realistic images without a segmentation mask. A
further model can then be conditioned on segmentation masks y to produce matching elements
to the joint space X' x) yielding D¢ : Z X Y — X.

The first step of our approach, shown in Figure 3.1, is to generate a set of images X; =
{a:,(})\x%l) = Dy(2),2 ~ N(0,0)} C X where Dy is an unconditional diffusion model trained
on real data samples. We then map all samples :1:%1) to the corresponding elements in the set of
predicted label masks Y7 = {y,(})|yg) = Mg(asg)), zll) € X1} € Y, where My is the baseline

segmentation model trained on real data pairs. This creates a dataset denoted d;.

The second step is to generate a dataset ds of segmentation masks and images, using a diffusion
model conditioned on the synthetic segmentation masks, Y;. This diffusion model is D¢, which
is trained on real images and segmentation masks and applied to the data pairs in dq, such that
X9 = {9322)]:13%2) = Dg(y,(}), z),yr(Ll) € Y1,z ~N(0,0)}. This lets us generate a much larger and
more diverse dataset of image-label pairs, where the images are generated from the labels.

Our final step is to use this dataset to train a new segmentation model M, that largely outper-
forms Mpy. To do so, we evaluate performance through various training strategies, including first
training M, on the synthetic dataset do and fine-tuning it on the real dataset.

Figure 3.1: Pipeline for generating a synthetic dataset with paired images and segmentation
masks as described in Section 3.2. Diffusion model D, generates images unconditionally, My
segments them, and D¢ creates multiple images from these segmentations. Dataset dz is the one
used to train our final model M. (Cechnicka et al. [29])

16

3.3 Implementation

3.3.1 Dataset Pre-processing

The first dataset we trained and evaluated our models on is the public KUMAR dataset [30]
detailed in Section 5.1.2. Patches in this dataset are randomly cropped to 256 x 256, so only a
base 64 x 64 model and 64 x 64 — 256 x 256 model are used for this dataset. Along with random
crops, the images are flipped and rotated when training the diffusion model. When training
the segmentation model, rotation, flipping, colour shift, random cropping, and elastic transfor-
mations are all used to augment the images. It is worth noting that the baseline methods [31]
only use 16 of the 30 images available for training. The labels for tissue and cancer type are
additionally used to condition image generation in the diffusion model.

The second dataset is a private dataset of kidney whole slide images, detailed in Section 5.1.1.
When training the diffusion model, patches of 1024 x 1024 pixels are taken from the whole
slide image. Each patch is flipped and rotated, and also shifted meaning that some patches
in the dataset overlap. Whole slide images have a lot of whitespace which is filtered out in
a pre-processing step so that the model learns only to synthesise patches that are valuable to
downstream tasks. Similar augmentations are made to the segmentation masks when training
the segmentation-mask-conditioned models.

For both datasets, the images are resized down to the dimension of the model being trained.
For example, for the base model, the patches are resized to 64 x 64 pixels and for the 64 x 64 —
256 x 256 model, the patches are resized to 64 x 64 for the low-resolution conditioning image,
and 256 x 256 for the output.

3.3.2 Models and Training

We use a cascaded diffusion model similar to Imagen [12] with three stages, starting with a
base model that generates 64 x 64 images, and then two super-resolution models to upscale to
resolutions 256 x 256 and 1024 x 1024. The model trained on the KUMAR dataset [30] does
not have the last super-resolution model since it generates 256 x 256 images. Conditioning
augmentation [9] is used in super-resolution networks to improve sample quality.

In contrast to [12], we experimented with using v-parameterization [32] to train the super-
resolution models. This is instead of a typical noise-parameterized model [7]. The super-
resolution models, particularly the 256 x 256 — 1024 x 1024 model, are much more compu-
tationally demanding to train and sample. I found that using v-parameterization allowed as few
as 256 sampling steps instead of 1024 in the noise prediction setting and trained faster. Despite
this, when experimenting further with noise prediction, although early convergence was signifi-
cantly worse, performance using either seemed to converge when training for longer periods of
time even at 256 sampling steps. The unconditional and segmentation-mask-conditioned results
presented in Section 5.5 are trained using v-parameterization, whereas the unconditional image
generation in Section 5.4 is evaluated on both v-parameterization in the first diffusion model
and noise-parameterization in the final better-performing diffusion model.

We use PyTorch with three Nvidia A5000 GPUs to initially train and evaluate our diffusion and
segmentation models, along with three Nvidia A100 GPUs to improve upon the unconditional
model later on. The kidney study segmentation models were trained for 200 epochs and fine-
tuned for 25, the KUMAR study used 800 epochs and was fine-tuned for 100. Training takes
about 10 days with this setup. Where real data was used for fine-tuning this was restricted to
30% of the original dataset. Diffusion models were trained with a learning rate of le—4 and
segmentation models were pre-trained with a learning rate of le—3 which dropped to 3e—6 when
no change was observed on the validation set in 15 epochs. All models used Adam optimiser.

17

When training the segmentation-mask-conditioned model, there was much less training data
available since annotating whole slide images is very time-consuming and must be carried out
by expert pathologists. As a result, we first pre-trained a model using the unannotated dataset
with blank segmentation masks. This allows the model to take advantage of a much bigger
dataset. After pre-training, the model is fine-tuned on the smaller annotated dataset so that
the model learns to associate the segmentation masks with structures it learns how to generate
in pre-training.

Two unconditional models were trained for the kidney dataset. Both are evaluated in Section
5.4, but only the first model is evaluated on the downstream segmentation task. The first
unconditional model uses all of the hyperparameters listed in Tables 3.1 and 3.2, but instead
with U-Net 1 dim_mults as (1, 2, 3, 4), and pred_objectives as (noise, v, v). The first model
is also conditioned on patient information, such as the patient outcome, but this led to poor
diversity even when generating images unconditionally. The same hyperparameters were used
when training using the KUMAR dataset [30] as in the first model, with the removal of U-Net 3
since only 256 x 256 pixel images were generated. The segmentation-mask-conditioned models
were trained by fine-tuning the first unconditional models for both the kidney and KUMAR
datasets. The second and final unconditional model has hyperparameters listed in Tables 3.1
and 3.2.

Hyperparameter Value Hyperparameter Value

dim 256 dim 128
dim_mults (1,2, 4, 8) dim_mults (1,2, 4, 8)
cond_dim 512 cond_dim 512
num_resnet_blocks 3 num_resnet_blocks 2
layer_attns (F, T, T, T) layer_attns (F,F,F, T)
layer_cross_attns (F, T, T, T) layer_cross_attns (F,F, T, T)
init_conv_to_final False init_conv_to_final True
_conv_residual _conv_residual

(a) U-Net 1 Hyperparameters

Hyperparameter Value
dim 128
dim_mults (1,2, 4, 8)
cond_dim 512
num_resnet_blocks (2,4,4,4)
layer_attns False
layer_cross_attns (F,F,F, T)
init_conv_to_final True
_conv_residual

(b) U-Net 2 Hyperparameters

(c¢) U-Net 3 Hyperparameters

Table 3.1: Hyperparameters used for U-Nets in the final unconditional diffusion model. Hyper-
parameter names are the same as those used in imagen_pytorch [17] for clarity. Any hyperpa-
rameters not mentioned are set to defaults. F and T mean False and True respectively.

18

Hyperparameter Value
image_sizes (64, 256, 1024)
timesteps (1024, 256, 256)
pred_objectives (noise, noise, noise)
random_crop_sizes | (None, None, 256)

Table 3.2: Global hyperparameters/settings used for the final unconditional diffusion model.
Names are the same as those used in imagen_pytorch [17] for clarity. Any hyperparameters not
mentioned are set to defaults.

For the kidney dataset, the first unconditional diffusion model was trained for 173,000 steps on
U-Net 1, 348,000 steps on U-Net 2, and 185,000 steps on U-Net 3. The fine-tuned segmentation-
mask-conditioned models were trained for a further 145,000 steps on U-Net 1, 143,000 steps
on U-Net 2, and 43,000 steps on U-Net 3. The second and final unconditional diffusion model
was trained for significantly longer at 1,734,000 steps on U-Net 1, 1,671,000 steps on U-Net 2,
and 1,398,000 steps on U-Net 3. The models trained on the KUMAR dataset were trained for
171,000 steps on U-Net 1, and 286,000 steps on U-Net 2.

For the kidney dataset where there are three U-Nets and sampling at 1024 x 1024 pixels, the
unconditional and segmentation-mask-conditioned models take around 1 minute and 10 seconds
to sample a single image on a single A100 GPU. This is much longer than other diffusion models,
such as Stable Diffusion [10], but this is to be expected given that no model distillation is used
here. Much faster sampling should be possible without any noticeable loss in performance using
distillation [32], but this is not a focus of this project.

19

Chapter 4

Ultra-Resolution Cascaded Diffusion
Models (URCDMs)

4.1 Problem Statement

Generating high-resolution images is already a challenge, with 1024 x 1024 being the typical
resolution that a high-resolution generative model will stop at [9]. This is due to several con-
straints, such as having less training data at very high resolutions, GPU memory, sampling
time, and model complexity. This makes generating ultra-resolution images, images that are
over a gigapixel in size, dramatically more complicated: a 10,000 x 10,000 gigapixel image with
1,000, 000,000 pixels has approximately 1000 times the number of pixels as a high-resolution
1024 x 1024 image.

Section 5.5 shows that smaller datasets can exhibit great improvements in performance on
downstream tasks when enriching the datasets with synthetic images generated using diffusion
models. Given that very high-resolution image datasets naturally have fewer images, there is
reason to believe that they would also benefit from being enriched with synthetic images to
improve performance.

Prior work from Chai et al. [5] achieves a similar goal using GANs without using additional layers
in the generator to iteratively upscale the image. However, Ho et al. [9] show that better results
are achieved for diffusion models when using separate U-Nets for each increase in resolution.
Inspired by this approach, it makes sense to experiment with a variant of the work by Chai
et al. [5] and Ho et al. [9] and apply it to the even higher-resolution domain of histopathology
whole slide images, which are discussed more in Section 5.1.1. Given the limited prior work
in synthetic gigapixel imagery, especially when using diffusion models, this work is much more
experimental and will assess whether this is possible at a proof-of-concept level, whilst offering
many ways that it could be improved in future work in Section 6.2.

Ultra-resolution histopathology images are usually split into patches to increase the amount of
training data and computational complexity. However, pathologists typically analyse Whole
Slide Images in their entirety; zooming in and out at multiple scales. Synthesising ultra-
resolution imagery could allow for more complex downstream algorithms that operate on the
entire image at different scales due to the additional training data it provides. Algorithms that
operate on very high-resolution images at different scales, such as You Only Look Twice [1]
which is applied to satellite imagery, will benefit greatly from both the long-distance spatial
coherency and high-quality fine details that ultra-high resolution synthetic images can provide.

There are two separate measures of success for this chapter:

Long-distance spatial coherency. The main goal of this chapter is to show that
coherent image generation at this scale is possible so that it can be feasibly used to enrich

20

datasets in the same way as the previous chapter. Due to a lack of real ultra-resolution images,
and long sampling times for synthetic images, this will largely be evaluated qualitatively by
comparing real and synthetic images visually. Patch-FID [5], explained in Section 5.2 will also
partially evaluate this since it computes the FID at multiple scales, including full scale at a low
resolution.

Realistic-looking at multiple scales. Generated ultra-resolution images must look
realistic both when ‘zoomed-out’ and when ‘zoomed-in’. Again, qualitative evaluation is most
important here, but Patch-FID [5] emulates this well by computing the FID at multiple scales
and positions.

Both of these measures of success can additionally be compared against outpainting as a baseline,
which is possible with a standard unconditional diffusion model. Furthermore, expert pathologist
evaluation will help assess the realism of the synthetic images.

4.2 Proposed Method

Ultra-Resolution Cascaded Diffusion Models (URCDMs) are based on similar principles as Cas-
caded Diffusion Models (CDMs) [9], in which there are three stages of increasing resolution.
Figure 4.1 shows the general architecture of a URCDM, in which multiple CDMs generate high-
resolution images at different magnification levels.

Low-mag. image Medium-mag. patch High-mag. patch

CDM —— — CDM — .~ —>CDM

Low-mag. Medium-mag. - High-mag. :
model model model

Figure 4.1: Ultra-Resolution Cascaded Diffusion Model (URCDM) architecture for generating
a single patch of an ultra-resolution image. Each image generated conditions the generation of
the higher magnification patch.

URCDMs start with a low-magnification model that unconditionally generates the entire image
at a resolution much lower than the full-resolution image. Using this image, the next medium-
magnification model is conditioned on the low-magnification image. This model is responsible for
generating a medium-magnification patch of the centre of the low-magnification image. Then,
we can stitch many patches together to form a low-magnification, but much higher-resolution,
image.

To achieve this, the lower-magnification conditioning image is shifted in a way such that the
patch that we want to generate is in the centre of the higher-magnification image. This means
that if we want to generate a medium-magnification patch of the top left of the low-magnification
image, we must shift the image that conditions generation such that the top-left is in the centre,
and pad or rollover any of the gaps left by shifting the image.

Once a higher-resolution image has been stitched together using the low and medium-magnification
models, we can use the high-magnification model to repeat a similar process and generate high-
magnification patches at each point in the higher-resolution image. Once all high-magnification
patches have been generated using the corresponding conditioning images, they can be stitched
together in the same way as before. This creates an ultra-resolution image with long-distance
coherency.

21

Intuitively, since higher-magnification patches are generated using the wider context of lower-
magnification patches, ultra-resolution images that are contextually accurate over many pixels
should be possible. This is in stark contrast to achieving the same result with outpainting [4]
where there is no context or knowledge of the image outside of the area the patch is being
generated. Using the kidney transplant dataset in Section 5.1.1 as an example, this means that
the overall structure of the whole slide image remains coherent, and it also looks coherent when
zoomed in. Using outpainting would only allow for the image to look coherent when zoomed in.

Low-magnification
CDM

64 x 64 256 x 256 1024 x 1024

A

conditioned on lower-magnification image

LY v v

Medium-magnification
CDM

1024 x 1024 64 x 64 256 x 256 1024 x 1024

v conditioned on lower-magnification image

2 . ./

High-magnification
CDM

64 x 64 256 x 256 1024 x 1024
6400 x 6400

41344 x 41344

Figure 4.2: Detailed overview of the Ultra-Resolution Cascaded Diffusion Model (URCDM)
image generation process. The medium and high-magnification CDMs are sampled many times,
and the patches generated are stitched together. This diagram only shows one patch from the
medium and high-magnification images being generated. A blue outline indicates the lower-
magnification conditioning image. A green outline indicates the resultant patch that will be
‘zoomed in’ on and generated. Not to scale.

Figure 4.2 gives a detailed look at the image generation process in practice, showing each of the
three CDMs, each with three diffusion models. This highlights one difficulty in image generation,

22

which is when patches are generated near the bounds of the lower-magnification image. The
lower-magnification conditioning image can go outside the bounds of the original image, which
means those pixels must be padded. In practice, the value that you pad this with is dataset-
dependent. The datasets we are working with have lots of cream-coloured whitespace making it
a sensible colour to pad with.

4.3 Implementation

4.3.1 Models and Training

In the Ultra-Resolution Cascaded Diffusion Model, there are 9 diffusion models in total, from
three separate Cascaded Diffusion Models (CDMs). None of the models are dependent on
another so they are trained in parallel on 9 separate Nvidia A100 GPUs. The model architecture
and training are heavily based on Imagen [12] using the imagen-pytorch [17] library. I am using
PyTorch version 2.0.0 and imagen-pytorch version 1.18.5.

Each CDM targets a different magnification of the overall image. The first CDM is a full-
scale but low-resolution image, taking a 40,000 x 40,000 pixel crop of the kidney image and
resizing this to 1024 x 1024. The second model takes 6500 x 6500 crops and resizes this to
1024 x 1024. Finally, the last model takes full-magnification images and doesn’t resize them,
taking 1024 x 1024 crops. 6500 x 6500 was arbitrarily chosen as being approximately 6 times
larger than 1024, and 6 times smaller than 40,000, placing it in the middle of both in terms of
magnification. The URCDM is not restricted to these values though, and they can be trivially
changed to suit the dataset.

I also experimented with removing the base 64 x 64 U-Net for the medium and high magnification
models and instead using a centre crop of the lower-magnification image to serve as the low-
resolution input into the super-resolution networks. This would be beneficial as it could increase
coherency between the CDMs and speed up sampling. Unfortunately, this resulted in blurry
images that were much lower quality. This could be because the base model is much larger and
so it has a better capacity for generating high-quality images than the super-resolution models in
the previous layer, or because previous CDMs are generating images that are out-of-distribution
when compared to what the higher magnification CDMs have been trained on.

Much work went into finding the best set of hyperparameters to use when training these models.
Training in general was much less stable when compared with the unconditional diffusion mod-
els in Section 3, and spurious infinite or NaN losses would halt training after training for a few
hundred thousand steps. I only noticed this behaviour on the larger 256 x 256 — 1024 x 1024
models, and it was dramatically worse when training this model using noise-parameterisation in-
stead of v-parameterisation. To combat this and stabilise training, I employed gradient clipping,
setting the max gradient norm to 1. In addition to stability issues, URCDM models trained
using noise-parameterisation in the super-resolution networks tend to have much lower quality
fine details, and would often blur or heavily distort lower magnification images when ‘zooming
in’. This led to v-parameterisation being the better choice for training super-resolution networks
in URCDMs.

23

Hyperparameter Value Hyperparameter Value
dim 256 dim 128
dim_mults (1,2, 3,4) dim_mults (1,2,4,8)
cond_dim 512 cond_dim 512
num_resnet_blocks 3 num_resnet_blocks 2
layer_attns (F, T, T, T) layer_attns (F,F,F, T)
layer_cross_attns (F, T, T, T) layer_cross_attns (F,F, T, T)
init_conv_to_final False init_conv_to_final True
_conv_residual _conv_residual
cond_images_channels | 3 (0 for low mag) cond_images_channels | 3 (0 for low mag)
(a) U-Net 1 Hyperparameters (b) U-Net 2 Hyperparameters

Hyperparameter Value

dim 128

dim_mults (1, 2,4, 8)

cond_dim 512

num_resnet_blocks (2,4, 4, 4)

layer_attns False

layer_cross_attns (F,F,F, T)

init_conv_to_final True

_conv_residual

cond_images_channels | 3 (0 for low mag)

(c¢) U-Net 3 Hyperparameters

Table 4.1: Hyperparameters used for U-Nets in the final URCDM trained on kidney data.
Hyperparameter names are the same as those used in imagen_pytorch [17] for clarity. Any
hyperparameters not mentioned are set to defaults. F and T mean False and True respectively.

Hyperparameter | Value
image_sizes (64, 256, 1024)
timesteps (1024, 256, 256)
pred_objectives (noise, v, v)
random_crop_sizes | (None, None, 256)
max_grad_norm 1

Table 4.2: Global hyperparameters/settings used for the final URCDM trained on kidney data.
Names are the same as those used in imagen_pytorch [17] for clarity. Any hyperparameters not
mentioned are set to defaults.

Table 4.3 shows the number of steps taken to train each U-Net within the URCDM. The low-
magnification model was trained for the least amount of time, as it was being trained on very
few low-magnification images, so the distribution of images was much less broad. The most
important models to train for a long period of time were the first U-Nets in the medium and
high-magnification models. I speculate as to why this is important in Section 5.6.2.

24

U-Net | Training Steps U-Net | Training Steps U-Net | Training Steps
1 475,000 1 2,450,000 1 1,125,000
2 450,000 2 450,000 2 1,550,000
3 375,000 3 200,000 3 325,000

(a) Low-Magnification Model (b) Medium-Magnification Model (c¢) High-Magnification Model

Table 4.3: Number of steps that each network was trained for during training of the kidney
URCDM.

4.3.2 Outpainting and Parallel Processing

Outpainting is used to smoothly merge generated patches together with minimal seams between
patches, so there is a dependency between neighbouring patches as each patch must slightly
overlap with each other so that they can see the edges of their neighbours when sampling.
Figure 4.3 shows this dependency, along with the lower-magnification condition images that
the model is ‘zooming-in’ on, and the inpainting images showing the overlapping neighbouring
patches used to generate each patch.

The first patch in Figure 4.3 is the top-left of the lower-magnification image. The second and
third patches are below and next to the first patch, respectively, and both require the first patch
to be generated before them since they use the first patch for the inpainting image. Since the first
three patches are on the corner or edges of the image, they don’t have any other neighbouring
patches. Finally, since the fourth patch is not on an edge, it has three neighbouring patches
in the top-left direction, so all of these must be generated before the fourth patch’s inpainting
image is known. This dependency between patches is especially important when batch-processing
images or sampling on multiple GPUs as it determines when patches can be generated in parallel,
something essential for reasonable sampling speeds.

25

O Lower magnification conditioning image

Inpainting image

First
patch

p—
Second Third
patch patch
Fourth
patch

Figure 4.3: Order that patches need to be generated when using outpainting with an Ultra-
Resolution Cascaded Diffusion Model (URCDM). To merge images without visible seams be-
tween patches, the diffusion model has access to the edges of neighbouring patches, shown in the
‘inpainting image’ for each patch. Every patch is conditioned on a lower magnification condi-
tioning image that gives the model a wider context during image generation. The model outputs
a ‘zoomed-in’ view of each conditioning image in the centre. Patches in this example have 25%
overlap.

Figure 4.4 shows the section of each patch generated that is ‘fresh’ and not overlapping with
previously generated patches. The first patch generated has no neighbouring patches so the
entire patch is new, whereas all other patches overlap with one or many other patches during
inpainting, so a smaller portion of the generated patch is new. The result of this is that the
more that patches overlap, the smaller the region that is newly generated is, so more patches
must be generated.

When choosing how much the patches overlap, there is a trade-off between the time taken to

26

generate an ultra-resolution image and patching artifacts. With no overlap, patching artifacts
are obvious and you can clearly see the boundary between generated patches. In practice, I
found that when 12.5% of the patches overlap with their neighbours (both in the vertical and
horizontal direction), artifacts were minimal and the number of patches was not dramatically
increased. I saw little to no increase in quality when increasing the overlap further.

First patch Third patch

Second patch Fourth patch

Figure 4.4: Small section of higher-magnification image generation, showing the portion of each
patch generated that is new and doesn’t overlap with previously-generated patches as a result of
outpainting. The first patch in the top-left is in the corner of the image, and has no neighbouring
patches to the left and above, so the entire patch is newly generated. The second and third
patches are on the edges, so overlap above and to the left with the first patch respectively.
Finally, the fourth patch overlaps with all three other patches so it contributes the least to the
overall image. Patches in this example have 25% overlap.

When sampling on multiple GPUs, one process is started for each GPU, and each process is
given access to a shared dictionary in which all generated patches are stored, along with a queue
of patches that are still left to generate. Because access to neighbouring patches is required for
outpainting, patches can only be generated once the patch next to, above, and above and next to,
are all generated or there is no patch in that direction because it is on the edge. Therefore, each
process dequeues a patch position to process and checks whether the patch can be generated.
If the patch can be generated, it is generated and then added to the shared dictionary so that
other processes can access it. If the patch cannot be generated, it is added back to the queue
and the process dequeues the next patch position. At the start, only one process can run as all
patches depend on the first patch directly or indirectly, but quickly as a few patches have been
generated, parallelism/batch-processing becomes possible.

Due to the added complexity, I did not implement sampling patches in batches as sampling
times were acceptable without this. However, this is something that is likely to considerably
improve sampling speeds as generating several images on a single GPU at once is significantly
faster overall than generating one image at a time.

4.3.3 Dataset Pre-processing

Since histopathology whole slide images are mostly whitespace, there is little reason to generate
patches at very high magnificati